To understand the water purification mechanism of potassium permanganate as a coagulation-aid during the preoxidation process,the microtopography of its reductive products,the newly formed hydrous manganese dioxide an...To understand the water purification mechanism of potassium permanganate as a coagulation-aid during the preoxidation process,the microtopography of its reductive products,the newly formed hydrous manganese dioxide and the aged hydrous manganese dioxide,was investigated.The morphology of natural organic matter(NOM)adsorbed by the newly formed hydrous manganese dioxide was also com-pared with that of NOM alone.By using the tapping mode atomic force microscopy(AFM),the observation results show that the newly formed hydrous manganese dioxide possess a perforated sheet(with a thickness of 0-1.75 nm)as well as some spherical particle structures compared with the hydrous manganese dioxide with 2 h aging time,which demonstrated that the newly formed hydrous manganese dioxide had a large surface area and adsorption capacity.When 1 mmol/L newly formed hydrous manganese dioxide was added,the micro-topography of NOM molecules shifted from a loosely dis-persed pancake shape(with adsorption height of 5-8.5 nm)to a densely dispersed and uniform spherical structure.These results provide a valid proof that it is the perfect adsorption capability of the newly formed hydrous manganese dioxide that might result in the coagulation aid effect of potassium permanganate preoxidation.展开更多
The processing of innovative lightweight materials to sheet metal components and assemblies with globally or locally defined properties is the object of this work. It takes a load-dependent design of components and as...The processing of innovative lightweight materials to sheet metal components and assemblies with globally or locally defined properties is the object of this work. It takes a load-dependent design of components and assemblies, for example, based on the composition of different construction materials or a targeted setting of component areas with specified characteristics to fully exploit the lightweight potential when substituting conventionally used materials. Different process chains for the manufacturing of roll-formed long products made of magnesium alloys and high-strength steels with locally defined properties will be presented in this paper. Depending on the kind of material to be formed and the desired product characteristics, different temperature managements are needed for capable processes. Due to limited formability at room temperature, magnesium alloys require a heating of the forming zones above 200–225 °C throughout the bending process in order to activate additional gliding planes and to avoid any failures in the radii. The realization of local hardening effects requires at least one process-integrated heat treatment when roll forming manganese–boron steels. For both processes, it is imperative to realize a heating and cooling down or quenching appropriate for the manufacturing of long products with the required quality. Additionally, proper line speeds that allow a continuously operated economical production have to be considered. Research results including design, FEA, realization and experimentation of the mentioned process chains and strategies will be described in detail.展开更多
基金This work was supported by the National Key Basic Research and Development(973)Program of China(Grant No.2004CB418505)。
文摘To understand the water purification mechanism of potassium permanganate as a coagulation-aid during the preoxidation process,the microtopography of its reductive products,the newly formed hydrous manganese dioxide and the aged hydrous manganese dioxide,was investigated.The morphology of natural organic matter(NOM)adsorbed by the newly formed hydrous manganese dioxide was also com-pared with that of NOM alone.By using the tapping mode atomic force microscopy(AFM),the observation results show that the newly formed hydrous manganese dioxide possess a perforated sheet(with a thickness of 0-1.75 nm)as well as some spherical particle structures compared with the hydrous manganese dioxide with 2 h aging time,which demonstrated that the newly formed hydrous manganese dioxide had a large surface area and adsorption capacity.When 1 mmol/L newly formed hydrous manganese dioxide was added,the micro-topography of NOM molecules shifted from a loosely dis-persed pancake shape(with adsorption height of 5-8.5 nm)to a densely dispersed and uniform spherical structure.These results provide a valid proof that it is the perfect adsorption capability of the newly formed hydrous manganese dioxide that might result in the coagulation aid effect of potassium permanganate preoxidation.
基金the Federal Government of Germanythe Free State of Saxony namely within the programs European Regional Development Fund and Innovative Regional Growth Cores
文摘The processing of innovative lightweight materials to sheet metal components and assemblies with globally or locally defined properties is the object of this work. It takes a load-dependent design of components and assemblies, for example, based on the composition of different construction materials or a targeted setting of component areas with specified characteristics to fully exploit the lightweight potential when substituting conventionally used materials. Different process chains for the manufacturing of roll-formed long products made of magnesium alloys and high-strength steels with locally defined properties will be presented in this paper. Depending on the kind of material to be formed and the desired product characteristics, different temperature managements are needed for capable processes. Due to limited formability at room temperature, magnesium alloys require a heating of the forming zones above 200–225 °C throughout the bending process in order to activate additional gliding planes and to avoid any failures in the radii. The realization of local hardening effects requires at least one process-integrated heat treatment when roll forming manganese–boron steels. For both processes, it is imperative to realize a heating and cooling down or quenching appropriate for the manufacturing of long products with the required quality. Additionally, proper line speeds that allow a continuously operated economical production have to be considered. Research results including design, FEA, realization and experimentation of the mentioned process chains and strategies will be described in detail.