期刊文献+
共找到5,336篇文章
< 1 2 250 >
每页显示 20 50 100
Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy
1
作者 Wenhua Yu Yanyan Wang +5 位作者 Aimin Wu Aikui Li Zhiwen Qiu Xufeng Dong Chuang Dong Hao Huang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期138-151,共14页
Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous ... Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO_(2) surface coating is proposed.Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy.LiYO_(2) nanocoating has the function of structural constraint and protection,that protecting the lattice oxygen exposed to the surface,thus avoiding irreversible oxidation.As an Li^(+) conductor,LiYO_(2) nano-coating can provide a fast Li^(+) transfer channel,which enables the sample to have excellent rate performance.The synergistic effect of Y doping and nano-LiYO_(2) coating integration suppresses the oxygen release from the surface,accelerates the diffusion of Li^(+)from electrolyte to electrode and decreases the interfacial side reactions,enabling the lithium ion batteries to obtain good electrochemical performance.The lithium-ion full cell employing the Y-1 sample(cathode)and commercial graphite(anode)exhibit an excellent specific energy density of 442.9 Wh kg^(-1) at a current density of 0.1C,with very stable safety performance,which can be used in a wide temperature range(60 to-15℃)stable operation.This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density. 展开更多
关键词 Lithium-rich manganese-based cathodes Lithium ion batteries Oxygen redox Oxygen evolution Integrated strategy
下载PDF
Recent advances and perspectives on vanadium-and manganese-based cathode materials for aqueous zinc ion batteries 被引量:9
2
作者 Na Liu Bin Li +3 位作者 Zhangxing He Lei Dai Haiyan Wang Ling Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期134-159,I0004,共27页
The growing demand for energy storage has inspired researchers’exploration of advanced batteries.Aqueous zinc ion batteries(ZIBs)are promising secondary chemical battery system that can be selected and pursued.Rechar... The growing demand for energy storage has inspired researchers’exploration of advanced batteries.Aqueous zinc ion batteries(ZIBs)are promising secondary chemical battery system that can be selected and pursued.Rechargeable ZIBs possess merits of high security,low cost,environmental friendliness,and competitive performance,and they are received a lot of attention.However,the development of suitable zinc ion intercalation-type cathode materials is still a big challenge,resulting in failing to meet the commercial needs of ZIBs.Both vanadium-based and manganese-based compounds are representative of the most advanced and most widely used rechargeable ZIBs electrodes.The valence state of vanadium is+2~+5,which can realize multi-electron transfer in the redox reaction and has a high specific capacity.Most of the manganese-based compounds have tunnel structure or three-dimensional space frame,with enough space to accommodate zinc ions.In order to understand the energy storage mechanism and electrochemical performance of these two materials,a specialized review focusing on state-of-the-art developments is needed.This review offers access for researchers to keep abreast of the research progress of cathode materials for ZIBs.The latest advanced researches in vanadium-based and manganese-based cathode materials applied in aqueous ZIBs are highlighted.This article will provide useful guidance for future studies on cathode materials and aqueous ZIBs. 展开更多
关键词 Zinc ion batteries cathode Vanadium-based materials manganese-based materials Recent advances
下载PDF
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
3
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic Defect engineering cathode materials Ion migration
下载PDF
Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries 被引量:2
4
作者 Kouthaman Mathiyalagan Dongwoo Shin Young-Chul Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期40-57,I0003,共19页
Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devi... Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs. 展开更多
关键词 O3-type P2-type cathode materials Sodium-ion batteries Layered structure
下载PDF
Modification strategies improving the electrochemical and structural stability of high-Ni cathode materials
5
作者 Yoon Bo Sim Hami Lee +1 位作者 Junyoung Mun Ki Jae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期185-205,共21页
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C... With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials. 展开更多
关键词 High energy density High-Ni cathode materials Degradation Structural stability Lithium-ion battery
下载PDF
Research progresses on cathode materials of aqueous zinc-ion batteries
6
作者 Zengyuan Fan Jiawei Wang +3 位作者 Yunpeng Wu Xuedong Yan Dongmei Dai Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期237-264,I0005,共29页
Electrochemical energy storage and conversion techniques that exhibit the merits such as high energy density,rapid response kinetics,economical maintenance requirements and expedient installation procedures will hold ... Electrochemical energy storage and conversion techniques that exhibit the merits such as high energy density,rapid response kinetics,economical maintenance requirements and expedient installation procedures will hold a pivotal role in the forthcoming energy storage technologies revolution.In recent years,aqueous zinc-ion batteries(AZIBs)have garnered substantial attention as a compelling candidate for large-scale energy storage systems,primarily attributable to their advantageous featu res encompassing cost-effectiveness,environmental sustainability,and robust safety profiles.Currently,one of the primary factors hindering the further development of AZIBs originates from the challenge of cathode materials.Specifically,the three mainstream types of mainstream cathode materials,in terms of manganese-based compounds,vanadium-based compounds and Prussian blue analogues,surfer from the dissolution of Mn~(2+),in the low discharge voltage,and the low specific capacity,respectively.Several strategies have been developed to compensation the above intrinsic defects for these cathode materials,including the ionic doping,defect engineering,and materials match.Accordingly,this review first provides a systematic summarization of the zinc storage mechanism in AZIBs,following by the inherent merit and demerit of three kind of cathode materials during zinc storage analyzed from their structure characteristic,and then the recent development of critical strategies towards the intrinsic insufficiency of these cathode materials.In this review,the methodologies aimed at enhancing the efficacy of manganese-based and vanadium-based compounds are emphasis emphasized.Additionally,the article outlines the future prospective directions as well as strategic proposal for cathode materials in AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries cathode materials Optimization strategies
下载PDF
Recent progress in Ni-rich layered oxides and related cathode materials for Li-ion cells
7
作者 Boyang Fu Maciej Moździerz +1 位作者 Andrzej Kulka Konrad Świerczek 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2345-2367,共23页
Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the... Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the energy density,cyclability,charging speed,reduced costs,as well as safety and stability,already contribute to the wider adoption of LIBs,which extends nowadays beyond mobile electronics,power tools,and electric vehicles,to the new range of applications,including grid storage solutions.With numerous published papers and broad reviews already available on the subject of Ni-rich oxides,this review focuses more on the most recent progress and new ideas presented in the literature references.The covered topics include doping and composition optimization,advanced coating,concentration gradient and single crystal materials,as well as innovations concerning new electrolytes and their modification,with the application of Ni-rich cathodes in solid-state batteries also discussed.Related cathode materials are briefly mentioned,with the high-entropy approach and zero-strain concept presented as well.A critical overview of the still unresolved issues is given,with perspectives on the further directions of studies and the expected gains provided. 展开更多
关键词 lithium-ion batteries cathode materials nickel-rich layered oxides recent progress critical issues improvement strategies
下载PDF
Recent Progress and Regulation Strategies of Layered Materials as Cathode of Aqueous Zinc-Ion Batteries
8
作者 Yuan Yuan Si Wu +2 位作者 Xiaoxue Song Jin Yong Lee Baotao Kang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期14-31,共18页
Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The lay... Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs. 展开更多
关键词 layered cathode materials modifying strategies structure regulation zinc-ion batteries
下载PDF
Research on Preparation and Electrochemical Performance of the High Compacted Density Ni-Co-Mn Ternary Cathode Materials
9
作者 Fupeng Zhi Juanhui Wang +1 位作者 Xiaomin Zhang Jun Zhang 《Advances in Materials Physics and Chemistry》 CAS 2024年第3期47-53,共7页
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn... The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance. 展开更多
关键词 High Compacted Density Ternary cathode materials Electrochemical Performance
下载PDF
Study on Preparation of Cathode Material of Lithium Iron Phosphate Battery by Self-Craning Thermal Method
10
作者 Maosen Pan Yali Ge Bo-hao Lin 《Journal of Electronic Research and Application》 2024年第6期194-199,共6页
The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron... The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM).The electrochemical properties of LiFePO4/C materials were measured by the constant current charge-discharge method and cyclic voltammetry.The results showed that the LiFePO4/C material prepared by the self-propagating heat method has a typical olivine crystal structure,and the product had fine grains and good electrochemical properties.The optimal sintering temperature is 700℃,the sintering time is 24 h,the particle size of the lithium iron phosphate material is about 300 nm,and the maximum discharge capacity is 121 mAh/g at 0.1 C rate. 展开更多
关键词 BATTERY cathode material Lithium iron phosphate Autocratic heat method
下载PDF
Influences of transition metal on structural and electrochemical properties of Li[Ni_xCo_yMn_z]O_2(0.6≤x≤0.8) cathode materials for lithium-ion batteries 被引量:5
11
作者 潘成迟 朱裔荣 +5 位作者 杨应昌 侯红帅 景明俊 宋维鑫 杨旭明 纪效波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1396-1402,共7页
Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observ... Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observed from X-ray diffraction(XRD)increases with decreasing the Ni content or increasing the Co content.The scanning electron microscopy(SEM) images reveal that the small primary particles are agglomerated to form the secondary ones.As the Mn content increases,the primary and secondary particles become larger and the resulted particle size for the Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 is uniformly distributed in the range of100-300 nm.Although the initial discharge capacity of the Li/Li[NixCoyMn2]O2 cells reduces with decreasing the Ni content,the cyclic performance and rate capability are improved with higher Mn or Co content.The Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 can deliver excellent cyclability with a capacity retention of 97.1%after 50 cycles. 展开更多
关键词 Li[NixCoyMnz]O2 electrochemical performance cathode material lithium-ion battery
下载PDF
Grinding sol gel synthesis and electrochemical performance of mesoporous Li_3V_2(PO_4)_3 cathode materials 被引量:3
12
作者 刘国聪 刘又年 刘素琴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期439-444,共6页
Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sint... Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature. 展开更多
关键词 Li3Vz(PO4)3 cathode material mesoporous structure grinding-sol-gel method electrochemical performance
下载PDF
Influence of pH value and chelating reagent on performance of Li_3V_2(PO_4)3/C cathode material 被引量:2
13
作者 向伟 唐艳 +4 位作者 王雁英 钟本和 方为茂 刘恒 郭孝东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1395-1402,共8页
The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structur... The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%. 展开更多
关键词 Li3V2(PO4)3 cathode material sol-gel method chelating agents pH value
下载PDF
Effect of Mn-doping on performance of Li_3V_2(PO_4)_3/C cathode material for lithium ion batteries 被引量:3
14
作者 翟静 赵敏寿 王丹丹 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期523-528,共6页
Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galva... Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+. 展开更多
关键词 lithium ion batteries cathode materials Li3V2(PO4)3 SOL-GEL doping
下载PDF
Synthesis and electrochemical properties of LiNi_(0.87)Co_(0.10)Mg_(0.03)O_2 cathode materials
15
作者 邓龙征 吴锋 +2 位作者 高旭光 刘震天 谢海明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期527-532,共6页
A Co-Mg co-substituted LiNi0.87Co0.10Mg0.03O2 cathode material was prepared by a co-precipitation method. The prepared LiNi0.87Co0.10Mg0.03O2 exhibits excellent electrochemical properties, such as initial discharge ca... A Co-Mg co-substituted LiNi0.87Co0.10Mg0.03O2 cathode material was prepared by a co-precipitation method. The prepared LiNi0.87Co0.10Mg0.03O2 exhibits excellent electrochemical properties, such as initial discharge capacities of 202.6 mA.h/g and 190.5 mA.h/g at 0.2C and 1C rate, respectively, in operating voltage range of 3.0-4.3 V (versus Li^+/Li). The capacity retentions are 96.1% and 93.4% at 0.2C and 1C, respectively, after 50 cycles. Moreover, the cycle performance of the sample was investigated in a 053048-type square Li ion battery. This type of battery can keep 81.7% of initial capacity after 500 charge-discharge cycles at 1C rate, which is close to that of commercial LiCoO2 battery. Therefore, the as-prepared material is capable of such high energy applications as portable product power. 展开更多
关键词 lithium-ion batteries cathode material co-precipitation method cobalt-magnesium co-substitution ELECTROCHEMICALPROPERTIES
下载PDF
Effects of chromium doping on performance of LiNi_(0.5)Mn_(1.5)O_4 cathode material
16
作者 王巍 刘恒 +2 位作者 王燕 高超 张军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2066-2070,共5页
In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2 Ni0.5 Mn1.5 O (0≤Y≤0.15) particles were Y -Y -Y 4 synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5... In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2 Ni0.5 Mn1.5 O (0≤Y≤0.15) particles were Y -Y -Y 4 synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5Mn1.5O4 on the structures and electrochemical properties were investigated. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge test and electrochemical impedance spectrum (EIS). The results indicate that the LiCr2 Ni0.5 Mn1.5 O possess a spinel structure and small particle size, and LiCr0.2Ni0.4Mn1.4O4exhibits Y -Y -Y 4 the best cyclic and rate performance. It can deliver discharge capacities of 143 and 104 mA·h/g at 1C and 10C, respectively, with good capacity retention of 96.5% at 1C after 50 cycles. 展开更多
关键词 lithium ion batteries cathode material SPINEL Cr doping lithium nickel manganese oxide
下载PDF
Synthesis of Ni_(0.8)Co_(0.1)Mn_(0.1)(OH)_2 precursor and electrochemical performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 cathode material for lithium batteries 被引量:4
17
作者 黄越 王志兴 +2 位作者 李新海 郭华军 王接喜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2253-2259,共7页
Spherical and homogeneously mixed metal hydroxide Ni0.8Co0.1Mn0.1(OH)2 precursor was successfully synthesized by co-precipitation method in a simple and small vessel with the volume of 1L.The conditions of synthetic... Spherical and homogeneously mixed metal hydroxide Ni0.8Co0.1Mn0.1(OH)2 precursor was successfully synthesized by co-precipitation method in a simple and small vessel with the volume of 1L.The conditions of synthetic process including amount of chelating agent,stirring speed and temperature were studied.LiNi0.8Co0.1Mn0.1O2 samples were obtained by calcinating the precursors.The crystal structure,morphology and electrochemical properties were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),charge-discharge test,AC impedance and cyclic voltammetry.In the voltage range of 2.8-4.3 V,the initial discharge capacities of LiNi0.8Co0.1Mn0.1O2 at 0.1C and 1C rates were 199 and 170 mA·h/g,respectively.After 80 cycles at 1C,the discharge capacity retention was 92%,suggesting its promising application as the cathode material for Li-ion batteries. 展开更多
关键词 lithium-ion batteries cathode material CO-PRECIPITATION electrochemical properties
下载PDF
Effect of Mg doping on electrochemical performance of Li_3V_2(PO_4)_3/C cathode material for lithium ion batteries 被引量:3
18
作者 罗韵泽 何利华 刘旭恒 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2266-2271,共6页
Li3Mg(2x)V(2-2x)(PO4)3/C(x=0,0.05,0.1,0.2) composites were synthesized by carbothermic reduction,using a self-made MgNH4PO4/MgHPO4 compound as Mg-doping agent.X-ray diffraction(XRD),scanning electron microsc... Li3Mg(2x)V(2-2x)(PO4)3/C(x=0,0.05,0.1,0.2) composites were synthesized by carbothermic reduction,using a self-made MgNH4PO4/MgHPO4 compound as Mg-doping agent.X-ray diffraction(XRD),scanning electron microscope(SEM),electrochemical performance tests were employed to investigate the effect of Mg doping on Li3V2(PO4)3/C samples.The results showed that a proper quantity of Mg doping was beneficial to the reduction of charge transfer resistance of Li3V2(PO4)3/C compound without changing the lattice structure,which led to larger charge/discharge capacity and better cycle performance especially at high current density.Li3Mg(2x)V(2-2x)(PO4)3/C sample with x=0.05 exhibited a better performance with initial charge/discharge capacity of146/128 mA·h/g and discharge capacity of 115 mA·h/g at 5C,while these two figures were 142/118 mA·h/g and 90 mA·h/g respectively for samples without Mg doping,indicating that a proper amount of doped Mg can improve the electrochemical performance of LVP sample.All of these proved that,as a trial Mg dopant,the synthesized MgNH4PO4/MgHPO4 compound exhibited well doping effect. 展开更多
关键词 lithium vanadium phosphate MG-DOPING cathode materials carbothermic reduction
下载PDF
Influence of synthesis temperature on electrochemical performance of polyoxomolybdate as cathode material of lithium ion battery 被引量:1
19
作者 李文良 倪尔福 +1 位作者 李新海 郭华军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2687-2692,共6页
In order to improve the electrochemical performance of polyoxomolybdate Na3[AlMo6O24H6](NAM) as the cathode material of lithium ion battery, the NAM materials with small particle size were synthesized by elevatingth... In order to improve the electrochemical performance of polyoxomolybdate Na3[AlMo6O24H6](NAM) as the cathode material of lithium ion battery, the NAM materials with small particle size were synthesized by elevatingthe synthesistemperaturein the solution.The as-prepared NAM materials were investigated by FT-IR, XRD, SEM and EIS. Their discharge-charge and cycle performance were also tested. The resultsshowthat the particle size decreasesto less than10μm at the temperature ofhigher than 40℃.When synthesized at 80℃,the NAMwiththe smallest particle size (-3μm)exhibitsthe best electrochemical performance such ashigh initial discharge capacity of 409 mA·h/gandcoulombic efficiency of 95% in the first cycle at 0.04C. 展开更多
关键词 POLYOXOMOLYBDATE lithium ion battery cathode material high capacity
下载PDF
Synthesis of porous nano/micro structured LiFePO_4/C cathode materials for lithium-ion batteries by spray-drying method 被引量:1
20
作者 管晓梅 李国军 +1 位作者 黎春阳 任瑞铭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期141-147,共7页
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result... In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres. 展开更多
关键词 LiFePO4/C cathode nano/micro structure porous material spray drying electrochemical properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部