Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous ...Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO_(2) surface coating is proposed.Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy.LiYO_(2) nanocoating has the function of structural constraint and protection,that protecting the lattice oxygen exposed to the surface,thus avoiding irreversible oxidation.As an Li^(+) conductor,LiYO_(2) nano-coating can provide a fast Li^(+) transfer channel,which enables the sample to have excellent rate performance.The synergistic effect of Y doping and nano-LiYO_(2) coating integration suppresses the oxygen release from the surface,accelerates the diffusion of Li^(+)from electrolyte to electrode and decreases the interfacial side reactions,enabling the lithium ion batteries to obtain good electrochemical performance.The lithium-ion full cell employing the Y-1 sample(cathode)and commercial graphite(anode)exhibit an excellent specific energy density of 442.9 Wh kg^(-1) at a current density of 0.1C,with very stable safety performance,which can be used in a wide temperature range(60 to-15℃)stable operation.This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density.展开更多
A series of iron-manganese-based sorbents were prepared by co-precipitation and physical mixing method,and used for H_(2)S removal from hot coal gas.The sulfidation tests were carried out in a fixed-bed reactor with s...A series of iron-manganese-based sorbents were prepared by co-precipitation and physical mixing method,and used for H_(2)S removal from hot coal gas.The sulfidation tests were carried out in a fixed-bed reactor with space velocity of 2000 h^(-1)(STP).The results show that the suitable addition of manganese oxide in iron-based sorbent can decrease H_(2)S and COS concentration in exit before breakthrough due to its simultaneous reaction capability with H_(2)S and COS.Fe3O4 and MnO are the initial active components in iron-manganese-based sorbent,and FeO and Fe are active components formed by reduction during sulfidation.The crystal phases of iron affect obviously their desulfurization capacity.The reducibility of sorbent changes with the content of MnO in sorbent.S7F3M and S3F7M have bigger sulfur capacities(32.68 and 32.30 gS/100 g total active component),while S5F5M has smaller sulfur capacity(21.92 gS/100 g total active component).S7F3M sorbent has stable sulfidation performance in three sulfidation-regeneration cycles and no apparent structure degradation.The sulfidation performance of ironmanganese-based sorbent is also related with its specific surface area and pore volume.展开更多
NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Am...NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Among the technologies for NF_(3)abatement,the destructive sorption of NF_(3)over metal oxides sorbents is an effective way.Thus,the search for a highly reactive and utilized sorbent for NF_(3)destruction is in great demand.In this work,AlOOH supported on carbon-sphere(AlOOH/CS)as precursors were synthesized hydrothermally and heat-treated to prepare the Al_(2)O_(3)sorbents.The influence of AlOOH/CS hydrothermal temperatures on the reactivity of derived Al_(2)O_(3)sorbents for NF_(3)destruction was investigated,and it is shown that the Al2O3 from AlOOH/CS hydro-thermalized at 120℃is superior to others.Subsequently,the optimized Al_(2)O_(3)was covered by Mn(OH)x to prepare Mn/Al_(2)O_(3)sorbents via changing hydrothermal temperatures and Mn loadings.The results show that the Mn/Al_(2)O_(3)sorbents are more utilized than bare Al_(2)O_(3)in NF_(3)destructive sorption due to the promotional effect of Mn_(2)O_(3)as surface layer on the fluorination of Al_(2)O_(3)as substrate,especially the optimal 5%Mn/Al2O3(160℃)exhibits a utilization percentage as high as 90.4%,and remarkably exceeds all the sorbents reported so far.These findings are beneficial to develop more efficient sorbents for the destruction of NF_(3).展开更多
The growing demand for energy storage has inspired researchers’exploration of advanced batteries.Aqueous zinc ion batteries(ZIBs)are promising secondary chemical battery system that can be selected and pursued.Rechar...The growing demand for energy storage has inspired researchers’exploration of advanced batteries.Aqueous zinc ion batteries(ZIBs)are promising secondary chemical battery system that can be selected and pursued.Rechargeable ZIBs possess merits of high security,low cost,environmental friendliness,and competitive performance,and they are received a lot of attention.However,the development of suitable zinc ion intercalation-type cathode materials is still a big challenge,resulting in failing to meet the commercial needs of ZIBs.Both vanadium-based and manganese-based compounds are representative of the most advanced and most widely used rechargeable ZIBs electrodes.The valence state of vanadium is+2~+5,which can realize multi-electron transfer in the redox reaction and has a high specific capacity.Most of the manganese-based compounds have tunnel structure or three-dimensional space frame,with enough space to accommodate zinc ions.In order to understand the energy storage mechanism and electrochemical performance of these two materials,a specialized review focusing on state-of-the-art developments is needed.This review offers access for researchers to keep abreast of the research progress of cathode materials for ZIBs.The latest advanced researches in vanadium-based and manganese-based cathode materials applied in aqueous ZIBs are highlighted.This article will provide useful guidance for future studies on cathode materials and aqueous ZIBs.展开更多
With the development of industrialization,the emission of volatile organic compounds(VOCs)to atmosphere causes serious environmental problems and the treatment of VOCs needs to consume a lot of energy.Moreover,indoor ...With the development of industrialization,the emission of volatile organic compounds(VOCs)to atmosphere causes serious environmental problems and the treatment of VOCs needs to consume a lot of energy.Moreover,indoor VOCs are seriously harmful to human health.Thus,there is an urgent requirement for the development of indoor VOCs treatment technologies.Catalytic degradation of VOCs,as a low energy consumption,high efficiency,and easy to achieve manner,has been widely studied in related fields.As a kind of transition metal catalyst,manganese-based catalysts have attracted a lot of attention in the catalytic degradation of VOCs because of their unique advantages including high efficiency,low cost,and excellent stability.This paper reviews the state-of-the-art progress of manganese-based catalysts for VOCs catalytic degradation.We introduce the thermocatalytic,photocatalytic and photo-thermocatalytic degradation of VOCs on manganese-based catalysts in this paper.The optimization of manganese-based catalysts by means of structural design,decorating modification and defect engineering is discussed.展开更多
Steelmaking industry faces urgent demands for both steel slag utilization and CO_(2)abatement.Ca and Mg of steel slag can be extracted by acid solution and used to prepare sorbents for CO_(2)capture.In this work,the c...Steelmaking industry faces urgent demands for both steel slag utilization and CO_(2)abatement.Ca and Mg of steel slag can be extracted by acid solution and used to prepare sorbents for CO_(2)capture.In this work,the calcium-based sorbents were prepared from stainless steel slag leachate by co-precipitation,and the initial CO_(2)chemisorption capacity of the calcium-based sorbent prepared from steel slag with the Ca and Mg molar ratio of 3.64:1 was 0.40 g/g.Moreover,the effect of Ca/Mg molar ratio on the morphology,structure,and CO_(2)chemisorption capacity of the calcium-based sorbents were investigated.The results show that the optimal Ca/Mg molar ratio of sorbent for CO_(2)capture was4.2:1,and the skeleton support effect of MgO in calcium-based sorbents was determined.Meanwhile,the chemisorption kinetics of the sorbents was studied using the Avrami-Erofeev model.There were two processes of CO_(2)chemisorption,and the activation energy of the first stage(reaction control)was found to be lower than that of the second stage(diffusion control).展开更多
Using environment-friendly and low-cost biowaste adsorbents as toxic metal ion removal substrates from aqueous solutions has a great economic advantage. This work evaluated pumpkin and potato peel biowastes for the ad...Using environment-friendly and low-cost biowaste adsorbents as toxic metal ion removal substrates from aqueous solutions has a great economic advantage. This work evaluated pumpkin and potato peel biowastes for the adsorption of cadmium ions. The biowastes were treated with acid or base. Batch experiments were carried out by introducing a known concentration of metal ion solution into the biowaste sorbent at various pH levels. The pH and metal ion concentration was monitored with pH and cadmium ion-selective electrode continuously for two hours, and the final concentration for the metal ion after 24 hours was measured with the cadmium electrode and then confirmed with ICP-OES. L-type isotherms were obtained that fit to Freundlich model. Adsorption isotherms showed chemical adsorption and the kinetics following the second order model. Equilibrium adsorption capacity is higher than 29 mg/g at pH 5.6 when the initial concentration is 220 ppm. Dynamic cadmium adsorption capacity is 17 mg/g from aqueous solution when the feed solution is 220 ppm with pumpkin peel biowaste sorbent. The biowaste materials can be regenerated with acid washing.展开更多
A kind of industrial solid waste, i.e., carbide slag, was used as CaO precursor to synthesize CO2 sorbent. The highly reactive synthetic sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol wa...A kind of industrial solid waste, i.e., carbide slag, was used as CaO precursor to synthesize CO2 sorbent. The highly reactive synthetic sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol water solution by the combustion synthesis method. The results show that the synthetic sorbent exhibits a much higher CO2 capture capacity compared with carbide slag. The CO2 capture capacity and the carbonation conversion of the synthetic sorbent are 0. 38 g/g and 0. 70 after 50 cycles, which are 1.8 and 2. 1 times those of carbide slag. The average carbonation conversion and the CO2 capture efficiency of the synthetic sorbent are higher than those of carbide slag with the same sorbent flow ratios. The required sorbent flow ratios are lower for synthetic sorbent to achieve the same CO2 capture efficiency compared with carbide slag. With the same sorbent flow ratio and CO2 capture efficiency, the energy requirement in calciner for the synthetic sorbent is less than that for carbide slag.展开更多
低浓度煤层气的提质利用对缓解国内天然气不足的现状具有重要意义,然而煤层气中存在的氮气杂质限制了该类资源的进一步应用,进行低浓度煤层气中CH_(4)/N_(2)混合物的分离至关重要。制备了两种具有弱极性超微孔的金属有机框架材料Sc-CPM-...低浓度煤层气的提质利用对缓解国内天然气不足的现状具有重要意义,然而煤层气中存在的氮气杂质限制了该类资源的进一步应用,进行低浓度煤层气中CH_(4)/N_(2)混合物的分离至关重要。制备了两种具有弱极性超微孔的金属有机框架材料Sc-CPM-66A和In-CPM-66A,研究材料从CH_(4)/N_(2)混合物中富集CH_(4)的性能,利用PXRD、77 K N_(2)吸附、TGA和FTIR光谱对材料的结构进行了表征。IAST选择性计算表明,In-CPM-66A和Sc-CPM-66A的CH_(4)/N_(2)选择性达到6.0。受益于材料表面存在的大量的甲基基团,两种材料对CH_(4)的吸附热低于被报道的大部分材料,材料与甲烷分子之间弱的相互作用有利于吸附剂的脱附再生。穿透实验进一步表明,CPM-66A可以实现动态条件下CH_(4)/N_(2)混合物的分离,循环穿透实验显示该类材料具有良好的可重复性。展开更多
As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-ener...As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-energy sodium-ion batteries,it is crucial to explore cathode materials operating at high voltages while maintaining a stable cycling behavior.The orbital and electronic structure of the octahedral center metal element plays a crucial role in maintaining the octahedra structural integrity and improving Na^(+)ion diffusion by introducing heterogeneous chemical bonding.Inspired by the abundant configuration of extra nuclear electrons and large ion radius,we employed trace amounts of tungsten in this study.The obtained cathode material can promote the reversibility of oxygen redox reactions in the high-voltage region and inhibit the loss of lattice oxygen.Additionally,the formation of a Na_(2)WO_(4) coating on the material surface can improve the interfacial stability and interface ions diffusion.It demonstrates an initial Coulombic efficiency(ICE)of 94.6%along with 168.5 mA h g^(-1 )discharge capacity within the voltage range of 1.9-4.35 V.These findings contribute to the advancement of high-energy sodium-ion batteries by providing insights into the benefits of tungsten doping and Na_(2)WO_(4) coating on cathode materials.展开更多
Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling...Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling opportunities.Herein,we report an open-loop recycling method to produce graded feedstock from mixed polyolefins waste,which makes up 60%of total plastic waste.The method uses heat flow scanning to quantify the composition of plastic waste and resolves its compatibility through controlled dissolution.The resulting feedstock is then used to synthesize blended pellets,porous sorbents,and superhydrophobic coatings via thermally induced phase separation and spin-casting.The hybrid approach broadens the opportunities for reusing plastic waste,which is a step towards creating a more circular economy and better waste management practices.展开更多
Manganese-based oxide electrode materials suffer from severe Jahn-Teller(J-T)distortion,leading to severe cycle instability in sodium ion storage.However,it is difficult to adjust the electron at d orbitals exactly to...Manganese-based oxide electrode materials suffer from severe Jahn-Teller(J-T)distortion,leading to severe cycle instability in sodium ion storage.However,it is difficult to adjust the electron at d orbitals exactly to a low spin state to eliminate orbital degeneracy and suppress J-T distortion fundamentally.This article constructed concentration-controllable Mn/O coupled vacancy and amorphous network in Mn_(3)O_(4) and coated it with nitrogen-doped carbon aerogel(Mn_(3-x)O_(4-y)@NCA).The existence of Mn/O vacancies has been confirmed by scanning transmission electron microscopy(STEM)and positron annihilation lifetime spectroscopy(PALS).Atomic absorption spectroscopy(AAS)and X-ray photoelectron spectroscopy(XPS)determine the most optimal ratio of Mn/O vacancies for sodium ion storage is 1:2.Density functional theory(DFT)calculations prove that Mn/O coupled vacancies with the ratio of 1:2could exactly induce a low spin states and a d~4 electron configuration of Mn,suppressing the J-T distortion successfully.The abundant amorphous regions can shorten the transport distance of sodium ions,increase the electrochemically active sites and improve the pseudocapacitance response.From the synergetic effect of Mn/O coupled vacancies and amorphous regions,Mn_(3-x)O_(4-y)@NCA exhibits an energy density of 37.5 W h kg^(-1)and an ultra-high power density of 563 W kg^(-1)in an asymmetric supercapacitor.In sodium-ion batteries,it demonstrates high reversible capacity and exceptional cycling stability.This research presents a new method to improve the Na^(+)storage performance in manganese-based oxide,which is expected to be generalized to other structural distortion.展开更多
基金This work was supported by the Fundamental Research Funds for the Central Universities(DUT20LAB123 and DUT20LAB307)the Natural Science Foundation of Jiangsu Province(BK20191167).
文摘Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO_(2) surface coating is proposed.Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy.LiYO_(2) nanocoating has the function of structural constraint and protection,that protecting the lattice oxygen exposed to the surface,thus avoiding irreversible oxidation.As an Li^(+) conductor,LiYO_(2) nano-coating can provide a fast Li^(+) transfer channel,which enables the sample to have excellent rate performance.The synergistic effect of Y doping and nano-LiYO_(2) coating integration suppresses the oxygen release from the surface,accelerates the diffusion of Li^(+)from electrolyte to electrode and decreases the interfacial side reactions,enabling the lithium ion batteries to obtain good electrochemical performance.The lithium-ion full cell employing the Y-1 sample(cathode)and commercial graphite(anode)exhibit an excellent specific energy density of 442.9 Wh kg^(-1) at a current density of 0.1C,with very stable safety performance,which can be used in a wide temperature range(60 to-15℃)stable operation.This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density.
基金support of the National Basic Research Program of China(2005CB221203)the National Natural Science Foundation of China(Grant No.20976117)+1 种基金Shanxi Province Natural Science Foundation(2010011014-3)Shanxi Province Basic Conditions Platform for Science and Technology Project(2010091015).
文摘A series of iron-manganese-based sorbents were prepared by co-precipitation and physical mixing method,and used for H_(2)S removal from hot coal gas.The sulfidation tests were carried out in a fixed-bed reactor with space velocity of 2000 h^(-1)(STP).The results show that the suitable addition of manganese oxide in iron-based sorbent can decrease H_(2)S and COS concentration in exit before breakthrough due to its simultaneous reaction capability with H_(2)S and COS.Fe3O4 and MnO are the initial active components in iron-manganese-based sorbent,and FeO and Fe are active components formed by reduction during sulfidation.The crystal phases of iron affect obviously their desulfurization capacity.The reducibility of sorbent changes with the content of MnO in sorbent.S7F3M and S3F7M have bigger sulfur capacities(32.68 and 32.30 gS/100 g total active component),while S5F5M has smaller sulfur capacity(21.92 gS/100 g total active component).S7F3M sorbent has stable sulfidation performance in three sulfidation-regeneration cycles and no apparent structure degradation.The sulfidation performance of ironmanganese-based sorbent is also related with its specific surface area and pore volume.
基金The financial support from the Natural Science Foundation of Shandong Province (ZR2020KB003)
文摘NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Among the technologies for NF_(3)abatement,the destructive sorption of NF_(3)over metal oxides sorbents is an effective way.Thus,the search for a highly reactive and utilized sorbent for NF_(3)destruction is in great demand.In this work,AlOOH supported on carbon-sphere(AlOOH/CS)as precursors were synthesized hydrothermally and heat-treated to prepare the Al_(2)O_(3)sorbents.The influence of AlOOH/CS hydrothermal temperatures on the reactivity of derived Al_(2)O_(3)sorbents for NF_(3)destruction was investigated,and it is shown that the Al2O3 from AlOOH/CS hydro-thermalized at 120℃is superior to others.Subsequently,the optimized Al_(2)O_(3)was covered by Mn(OH)x to prepare Mn/Al_(2)O_(3)sorbents via changing hydrothermal temperatures and Mn loadings.The results show that the Mn/Al_(2)O_(3)sorbents are more utilized than bare Al_(2)O_(3)in NF_(3)destructive sorption due to the promotional effect of Mn_(2)O_(3)as surface layer on the fluorination of Al_(2)O_(3)as substrate,especially the optimal 5%Mn/Al2O3(160℃)exhibits a utilization percentage as high as 90.4%,and remarkably exceeds all the sorbents reported so far.These findings are beneficial to develop more efficient sorbents for the destruction of NF_(3).
基金financially supported by the National Natural Science Foundation of China(No.51872090,51772097)the Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433,E2017209079)the financial support from Hunan Provincial Science and Technology Plan Project of China(No.2016TP1007,2017TP1001,and 2018RS3009)。
文摘The growing demand for energy storage has inspired researchers’exploration of advanced batteries.Aqueous zinc ion batteries(ZIBs)are promising secondary chemical battery system that can be selected and pursued.Rechargeable ZIBs possess merits of high security,low cost,environmental friendliness,and competitive performance,and they are received a lot of attention.However,the development of suitable zinc ion intercalation-type cathode materials is still a big challenge,resulting in failing to meet the commercial needs of ZIBs.Both vanadium-based and manganese-based compounds are representative of the most advanced and most widely used rechargeable ZIBs electrodes.The valence state of vanadium is+2~+5,which can realize multi-electron transfer in the redox reaction and has a high specific capacity.Most of the manganese-based compounds have tunnel structure or three-dimensional space frame,with enough space to accommodate zinc ions.In order to understand the energy storage mechanism and electrochemical performance of these two materials,a specialized review focusing on state-of-the-art developments is needed.This review offers access for researchers to keep abreast of the research progress of cathode materials for ZIBs.The latest advanced researches in vanadium-based and manganese-based cathode materials applied in aqueous ZIBs are highlighted.This article will provide useful guidance for future studies on cathode materials and aqueous ZIBs.
基金financially supported by the National Natural Science Foundation of China(No.22071173)the Natural Science Foundation of Tianjin City(No.20JCJQJC00050)。
文摘With the development of industrialization,the emission of volatile organic compounds(VOCs)to atmosphere causes serious environmental problems and the treatment of VOCs needs to consume a lot of energy.Moreover,indoor VOCs are seriously harmful to human health.Thus,there is an urgent requirement for the development of indoor VOCs treatment technologies.Catalytic degradation of VOCs,as a low energy consumption,high efficiency,and easy to achieve manner,has been widely studied in related fields.As a kind of transition metal catalyst,manganese-based catalysts have attracted a lot of attention in the catalytic degradation of VOCs because of their unique advantages including high efficiency,low cost,and excellent stability.This paper reviews the state-of-the-art progress of manganese-based catalysts for VOCs catalytic degradation.We introduce the thermocatalytic,photocatalytic and photo-thermocatalytic degradation of VOCs on manganese-based catalysts in this paper.The optimization of manganese-based catalysts by means of structural design,decorating modification and defect engineering is discussed.
基金financially supported by the National Natural Science Foundation of China(No.52074078)the National Key R&D Program of China(No.2021YFC2901200)+4 种基金the Applied Fundamental Research Program of Liaoning Province(No.2023JH2/101600002)the Liaoning Provincial Natural Science Foundation of China(No.2022-YQ-09)the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program,China(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group,China(No.KJBLM202202)the Fundamental Research Funds for the Central Universities,China(Nos.N2201023,N2325009)。
文摘Steelmaking industry faces urgent demands for both steel slag utilization and CO_(2)abatement.Ca and Mg of steel slag can be extracted by acid solution and used to prepare sorbents for CO_(2)capture.In this work,the calcium-based sorbents were prepared from stainless steel slag leachate by co-precipitation,and the initial CO_(2)chemisorption capacity of the calcium-based sorbent prepared from steel slag with the Ca and Mg molar ratio of 3.64:1 was 0.40 g/g.Moreover,the effect of Ca/Mg molar ratio on the morphology,structure,and CO_(2)chemisorption capacity of the calcium-based sorbents were investigated.The results show that the optimal Ca/Mg molar ratio of sorbent for CO_(2)capture was4.2:1,and the skeleton support effect of MgO in calcium-based sorbents was determined.Meanwhile,the chemisorption kinetics of the sorbents was studied using the Avrami-Erofeev model.There were two processes of CO_(2)chemisorption,and the activation energy of the first stage(reaction control)was found to be lower than that of the second stage(diffusion control).
文摘Using environment-friendly and low-cost biowaste adsorbents as toxic metal ion removal substrates from aqueous solutions has a great economic advantage. This work evaluated pumpkin and potato peel biowastes for the adsorption of cadmium ions. The biowastes were treated with acid or base. Batch experiments were carried out by introducing a known concentration of metal ion solution into the biowaste sorbent at various pH levels. The pH and metal ion concentration was monitored with pH and cadmium ion-selective electrode continuously for two hours, and the final concentration for the metal ion after 24 hours was measured with the cadmium electrode and then confirmed with ICP-OES. L-type isotherms were obtained that fit to Freundlich model. Adsorption isotherms showed chemical adsorption and the kinetics following the second order model. Equilibrium adsorption capacity is higher than 29 mg/g at pH 5.6 when the initial concentration is 220 ppm. Dynamic cadmium adsorption capacity is 17 mg/g from aqueous solution when the feed solution is 220 ppm with pumpkin peel biowaste sorbent. The biowaste materials can be regenerated with acid washing.
基金The National Natural Science Foundation of China(No.51376003)
文摘A kind of industrial solid waste, i.e., carbide slag, was used as CaO precursor to synthesize CO2 sorbent. The highly reactive synthetic sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol water solution by the combustion synthesis method. The results show that the synthetic sorbent exhibits a much higher CO2 capture capacity compared with carbide slag. The CO2 capture capacity and the carbonation conversion of the synthetic sorbent are 0. 38 g/g and 0. 70 after 50 cycles, which are 1.8 and 2. 1 times those of carbide slag. The average carbonation conversion and the CO2 capture efficiency of the synthetic sorbent are higher than those of carbide slag with the same sorbent flow ratios. The required sorbent flow ratios are lower for synthetic sorbent to achieve the same CO2 capture efficiency compared with carbide slag. With the same sorbent flow ratio and CO2 capture efficiency, the energy requirement in calciner for the synthetic sorbent is less than that for carbide slag.
文摘低浓度煤层气的提质利用对缓解国内天然气不足的现状具有重要意义,然而煤层气中存在的氮气杂质限制了该类资源的进一步应用,进行低浓度煤层气中CH_(4)/N_(2)混合物的分离至关重要。制备了两种具有弱极性超微孔的金属有机框架材料Sc-CPM-66A和In-CPM-66A,研究材料从CH_(4)/N_(2)混合物中富集CH_(4)的性能,利用PXRD、77 K N_(2)吸附、TGA和FTIR光谱对材料的结构进行了表征。IAST选择性计算表明,In-CPM-66A和Sc-CPM-66A的CH_(4)/N_(2)选择性达到6.0。受益于材料表面存在的大量的甲基基团,两种材料对CH_(4)的吸附热低于被报道的大部分材料,材料与甲烷分子之间弱的相互作用有利于吸附剂的脱附再生。穿透实验进一步表明,CPM-66A可以实现动态条件下CH_(4)/N_(2)混合物的分离,循环穿透实验显示该类材料具有良好的可重复性。
基金supported by the National Natural Science Foundation of China(Grant No.52272194)LiaoNing Revitalization Talents Program(Grant No.XLYC2007155)。
文摘As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-energy sodium-ion batteries,it is crucial to explore cathode materials operating at high voltages while maintaining a stable cycling behavior.The orbital and electronic structure of the octahedral center metal element plays a crucial role in maintaining the octahedra structural integrity and improving Na^(+)ion diffusion by introducing heterogeneous chemical bonding.Inspired by the abundant configuration of extra nuclear electrons and large ion radius,we employed trace amounts of tungsten in this study.The obtained cathode material can promote the reversibility of oxygen redox reactions in the high-voltage region and inhibit the loss of lattice oxygen.Additionally,the formation of a Na_(2)WO_(4) coating on the material surface can improve the interfacial stability and interface ions diffusion.It demonstrates an initial Coulombic efficiency(ICE)of 94.6%along with 168.5 mA h g^(-1 )discharge capacity within the voltage range of 1.9-4.35 V.These findings contribute to the advancement of high-energy sodium-ion batteries by providing insights into the benefits of tungsten doping and Na_(2)WO_(4) coating on cathode materials.
基金NPRP grant number NPRP12S-0325-190443 from the Qatar National Research Fund (a member of the Qatar Foundation)
文摘Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling opportunities.Herein,we report an open-loop recycling method to produce graded feedstock from mixed polyolefins waste,which makes up 60%of total plastic waste.The method uses heat flow scanning to quantify the composition of plastic waste and resolves its compatibility through controlled dissolution.The resulting feedstock is then used to synthesize blended pellets,porous sorbents,and superhydrophobic coatings via thermally induced phase separation and spin-casting.The hybrid approach broadens the opportunities for reusing plastic waste,which is a step towards creating a more circular economy and better waste management practices.
基金supported by the National Natural Science Foundation of China (22278231,22005165 and 22376110)the Natural Science Foundation Project of Shandong Province (ZR2022MB092 and ZR2023ME098)the Taishan Scholar Program (ts201712030)。
文摘Manganese-based oxide electrode materials suffer from severe Jahn-Teller(J-T)distortion,leading to severe cycle instability in sodium ion storage.However,it is difficult to adjust the electron at d orbitals exactly to a low spin state to eliminate orbital degeneracy and suppress J-T distortion fundamentally.This article constructed concentration-controllable Mn/O coupled vacancy and amorphous network in Mn_(3)O_(4) and coated it with nitrogen-doped carbon aerogel(Mn_(3-x)O_(4-y)@NCA).The existence of Mn/O vacancies has been confirmed by scanning transmission electron microscopy(STEM)and positron annihilation lifetime spectroscopy(PALS).Atomic absorption spectroscopy(AAS)and X-ray photoelectron spectroscopy(XPS)determine the most optimal ratio of Mn/O vacancies for sodium ion storage is 1:2.Density functional theory(DFT)calculations prove that Mn/O coupled vacancies with the ratio of 1:2could exactly induce a low spin states and a d~4 electron configuration of Mn,suppressing the J-T distortion successfully.The abundant amorphous regions can shorten the transport distance of sodium ions,increase the electrochemically active sites and improve the pseudocapacitance response.From the synergetic effect of Mn/O coupled vacancies and amorphous regions,Mn_(3-x)O_(4-y)@NCA exhibits an energy density of 37.5 W h kg^(-1)and an ultra-high power density of 563 W kg^(-1)in an asymmetric supercapacitor.In sodium-ion batteries,it demonstrates high reversible capacity and exceptional cycling stability.This research presents a new method to improve the Na^(+)storage performance in manganese-based oxide,which is expected to be generalized to other structural distortion.