A series of N-doped graphene(NG)and TiO_2 supported MnO_x–CeO_2 catalysts were prepared prepared by a hydrothermal method.The catalysts with different molar ratios of Mn/Ce(6:1,10:1,15:1)were investigated for the low...A series of N-doped graphene(NG)and TiO_2 supported MnO_x–CeO_2 catalysts were prepared prepared by a hydrothermal method.The catalysts with different molar ratios of Mn/Ce(6:1,10:1,15:1)were investigated for the low-temperature selective catalytic reduction(SCR)of NO_x with NH_3.The synthesized catalysts were characterized by HRTEM,SEM,XRD,BET,XPS,and NH_3-TPD technologies.The characterization results indicated that manganese and cerium oxide particles dispersed on the surface of the TiO_2–NG support uniformly,and that manganese and cerium oxides existed in different valences on the surface of the TiO_2–NG support.At Mn element loading of 8 wt%,MnO_x–CeO_2(10:1)/TiO_2–1%NG displayed superior activity and improved SO_(2 )resistance.On the basis of the catalyst characterization,excellent catalytic performance and SO_2 tolerance at low temperature were attributed to the high content of manganese with high oxidation valence,extensive oxidation of NO into NO_2 by CeO_2 and strong NO adsorption capacity,and electron transfer of N-doped graphene.展开更多
基金financially supported by the Program of Frontier Exploration Fund of China Building Materials Academy,"the whole process of air pollution control on new technology research" (No. 2016YFC0209302)
文摘A series of N-doped graphene(NG)and TiO_2 supported MnO_x–CeO_2 catalysts were prepared prepared by a hydrothermal method.The catalysts with different molar ratios of Mn/Ce(6:1,10:1,15:1)were investigated for the low-temperature selective catalytic reduction(SCR)of NO_x with NH_3.The synthesized catalysts were characterized by HRTEM,SEM,XRD,BET,XPS,and NH_3-TPD technologies.The characterization results indicated that manganese and cerium oxide particles dispersed on the surface of the TiO_2–NG support uniformly,and that manganese and cerium oxides existed in different valences on the surface of the TiO_2–NG support.At Mn element loading of 8 wt%,MnO_x–CeO_2(10:1)/TiO_2–1%NG displayed superior activity and improved SO_(2 )resistance.On the basis of the catalyst characterization,excellent catalytic performance and SO_2 tolerance at low temperature were attributed to the high content of manganese with high oxidation valence,extensive oxidation of NO into NO_2 by CeO_2 and strong NO adsorption capacity,and electron transfer of N-doped graphene.