The SnO_2/SnO with an orthorhombic structure is a material known to be stable at high pressures and temperatures and expected to have new optical and electrical properties. The authors report a new finding of the infr...The SnO_2/SnO with an orthorhombic structure is a material known to be stable at high pressures and temperatures and expected to have new optical and electrical properties. The authors report a new finding of the infrared laser induced a fast photovoltaic effect arising from orthorhombic tin oxide film with an indirect band gap(~2.4 e V) which is deposited by pulsed laser deposition. The rising time of the photovoltaic signal is about 3 ns with a peak value of 4.48 mV under the pulsed laser beam with energy density 0.015 m J/mm^2. The relation between the photovoltages and laser positions along the line between two electrodes of the film is also exhibited. A possible mechanism is put forward to explain this phenomenon.All data and analyses demonstrate that the orthorhombic tin oxide with an indirect band gap could be used as a candidate for an infrared photodetector which can be operated at high pressures and temperatures.展开更多
This paper reports that the transient laser-induced voltages have been observed in La2/3Ca1/3MnO3 thin films on MgO (001) in the absence of an applied current. A peak voltage of - 0.15 V was detected in response to ...This paper reports that the transient laser-induced voltages have been observed in La2/3Ca1/3MnO3 thin films on MgO (001) in the absence of an applied current. A peak voltage of - 0.15 V was detected in response to 0.015J pulse of 308 nm laser. It is demonstrated that the signal polarity is reversed when the films are irradiated through the substrate rather than at the air/film interface. Off-diagonal thermoelectricity may support the inversion of the signal when the irradiation direction is reversed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.60877038)
文摘The SnO_2/SnO with an orthorhombic structure is a material known to be stable at high pressures and temperatures and expected to have new optical and electrical properties. The authors report a new finding of the infrared laser induced a fast photovoltaic effect arising from orthorhombic tin oxide film with an indirect band gap(~2.4 e V) which is deposited by pulsed laser deposition. The rising time of the photovoltaic signal is about 3 ns with a peak value of 4.48 mV under the pulsed laser beam with energy density 0.015 m J/mm^2. The relation between the photovoltages and laser positions along the line between two electrodes of the film is also exhibited. A possible mechanism is put forward to explain this phenomenon.All data and analyses demonstrate that the orthorhombic tin oxide with an indirect band gap could be used as a candidate for an infrared photodetector which can be operated at high pressures and temperatures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60576015 and 50672132).
文摘This paper reports that the transient laser-induced voltages have been observed in La2/3Ca1/3MnO3 thin films on MgO (001) in the absence of an applied current. A peak voltage of - 0.15 V was detected in response to 0.015J pulse of 308 nm laser. It is demonstrated that the signal polarity is reversed when the films are irradiated through the substrate rather than at the air/film interface. Off-diagonal thermoelectricity may support the inversion of the signal when the irradiation direction is reversed.