Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd a...Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.展开更多
A junction composed of ultrathin La0.9Ca0.1MnO3+δ (LCMO) film and 1 wt.% Nb-doped SrTiO3 was fabricated and its magnetoresistance (MR) was studied and compared with LCMO film. It was found that the resistance of...A junction composed of ultrathin La0.9Ca0.1MnO3+δ (LCMO) film and 1 wt.% Nb-doped SrTiO3 was fabricated and its magnetoresistance (MR) was studied and compared with LCMO film. It was found that the resistance of the junction has a similar dependence on magnetic field as that of the LCMO film: the curvature of R-H curves is upward above Curie temperature (Tc) and downward below TC. These behaviours strongly suggest that the rotation of ferromagnetic clusters in manganite also causes MR in the corresponding junction. This MR can be qualitatively understood by the change of the width of the barrier induced by the rotation of ferromagnetic clusters. These results suggest a possibility to obtain junctions with large low-field MR.展开更多
Thermal-annealing has been widely used in modulating the oxygen content of manganites. In this work, we have studied the effect of annealing on the transport properties and magnetoresistance of junctions composed of a...Thermal-annealing has been widely used in modulating the oxygen content of manganites. In this work, we have studied the effect of annealing on the transport properties and magnetoresistance of junctions composed of a La0.9Ca0.1MnO3+6 film and a Nb-doped SrTiO3 substrate. We have demonstrated that the magnetoresistance of junctions is strongly dependent on the annealing conditions: Prom the junction annealed-in-air to the junction annealedin-vacuum, the magnetoresistance near 0-V bias can vary from ~-60% to N~0. A possible mechanism accounting for this phenomenon is discussed.展开更多
We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin-charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in mang...We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin-charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in manganite/Nb:SrTio3 p-n junctions in relation to the special interface electronic structure; magnetoelectric coupling in manganite/ferroelectric structures that takes advantage of strain, carrier density, and magnetic field sensitivity; tunneling magnetoresistance in tunnel junctions with dielectric, ferroelectric, and organic semiconductor spacers using the fully spin polarized nature of manganites; and the effect of particle size on magnetic properties in manganite nanoparticles.展开更多
文摘Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474133 and 10674169).
文摘A junction composed of ultrathin La0.9Ca0.1MnO3+δ (LCMO) film and 1 wt.% Nb-doped SrTiO3 was fabricated and its magnetoresistance (MR) was studied and compared with LCMO film. It was found that the resistance of the junction has a similar dependence on magnetic field as that of the LCMO film: the curvature of R-H curves is upward above Curie temperature (Tc) and downward below TC. These behaviours strongly suggest that the rotation of ferromagnetic clusters in manganite also causes MR in the corresponding junction. This MR can be qualitatively understood by the change of the width of the barrier induced by the rotation of ferromagnetic clusters. These results suggest a possibility to obtain junctions with large low-field MR.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474133 and 10674169)the National Fundamental Research of China (Grant No 2007CB925002)
文摘Thermal-annealing has been widely used in modulating the oxygen content of manganites. In this work, we have studied the effect of annealing on the transport properties and magnetoresistance of junctions composed of a La0.9Ca0.1MnO3+6 film and a Nb-doped SrTiO3 substrate. We have demonstrated that the magnetoresistance of junctions is strongly dependent on the annealing conditions: Prom the junction annealed-in-air to the junction annealedin-vacuum, the magnetoresistance near 0-V bias can vary from ~-60% to N~0. A possible mechanism accounting for this phenomenon is discussed.
基金supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China(Grant Nos.2012CB922003,2011CBA00102,and 2009CB929502)
文摘We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin-charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in manganite/Nb:SrTio3 p-n junctions in relation to the special interface electronic structure; magnetoelectric coupling in manganite/ferroelectric structures that takes advantage of strain, carrier density, and magnetic field sensitivity; tunneling magnetoresistance in tunnel junctions with dielectric, ferroelectric, and organic semiconductor spacers using the fully spin polarized nature of manganites; and the effect of particle size on magnetic properties in manganite nanoparticles.