Salient object detection remains one of the most important and active research topics in computer vision,with wide-ranging applications to object recognition,scene understanding,image retrieval,context aware image edi...Salient object detection remains one of the most important and active research topics in computer vision,with wide-ranging applications to object recognition,scene understanding,image retrieval,context aware image editing,image compression,etc. Most existing methods directly determine salient objects by exploring various salient object features.Here,we propose a novel graph based ranking method to detect and segment the most salient object in a scene according to its relationship to image border(background) regions,i.e.,the background feature.Firstly,we use regions/super-pixels as graph nodes,which are fully connected to enable both long range and short range relations to be modeled. The relationship of each region to the image border(background) is evaluated in two stages:(i) ranking with hard background queries,and(ii) ranking with soft foreground queries. We experimentally show how this two-stage ranking based salient object detection method is complementary to traditional methods,and that integrated results outperform both. Our method allows the exploitation of intrinsic image structure to achieve high quality salient object determination using a quadratic optimization framework,with a closed form solution which can be easily computed.Extensive method evaluation and comparison using three challenging saliency datasets demonstrate that our method consistently outperforms 10 state-of-theart models by a big margin.展开更多
Treatment determination based on syndrome differentiation is the key of Chinese medicine. A feasible way of improving the clinical therapy effectiveness is needed to correctly differentiate the syndrome classification...Treatment determination based on syndrome differentiation is the key of Chinese medicine. A feasible way of improving the clinical therapy effectiveness is needed to correctly differentiate the syndrome classifications based on the clinical manifestations. In this paper, a novel data mining method based on manifold ranking (MR) is proposed to explore the relation between syndromes and symptoms for viral hepatitis. Since MR could take the symptom data with expert differentiation and the symptom data without expert differentiation into the task of syndrome classification, the clinical information used for modeling the syndrome features is greatly enlarged so as to improve the precise of syndrome classification. In addition, the proposed method of syndrome classification could also avoid two disadvantages in previous methods: linear relation of the clinical data and mutually exclusive symptoms among different syndromes. And it could help exploit the latent relation between syndromes and symptoms more effectively. Better performance of syndrome classification is able to be achieved according to the experimental results and the clinical experts.展开更多
An audio information retrieval model based on Manifold Ranking(MR) is proposed, and ranking results are improved using a Relevance Feedback(RF) algorithm. Timbre components are employed as the model’s main feature. T...An audio information retrieval model based on Manifold Ranking(MR) is proposed, and ranking results are improved using a Relevance Feedback(RF) algorithm. Timbre components are employed as the model’s main feature. To compute timbre similarity, extracting the spectrum features for each frame is necessary; the large set of frames is clustered using a Gaussian Mixture Model(GMM) and expectation maximization. The typical spectra frame from GMM is drawn as data points, and MR assigns each data point a relative ranking score, which is treated as a distance instead of as traditional similarity metrics based on pair-wise distance. Furthermore, the MR algorithm can be easily generalized by adding positive and negative examples from the RF algorithm and improves the final result. Experimental results show that the proposed approach effectively improves the ranking capabilities of existing distance functions.展开更多
The graph-based manifold ranking saliency detection only relies on the boundary background to extract foreground seeds,resulting in a poor saliency detection result,so a method that obtains robust foreground for manif...The graph-based manifold ranking saliency detection only relies on the boundary background to extract foreground seeds,resulting in a poor saliency detection result,so a method that obtains robust foreground for manifold ranking is proposed in this paper.First,boundary connectivity is used to select the boundary background for manifold ranking to get a preliminary saliency map,and a foreground region is acquired by a binary segmentation of the map.Second,the feature points of the original image and the filtered image are obtained by using color boosting Harris corners to generate two different convex hulls.Calculating the intersection of these two convex hulls,a final convex hull is found.Finally,the foreground region and the final convex hull are combined to extract robust foreground seeds for manifold ranking and getting final saliency map.Experimental results on two public image datasets show that the proposed method gains improved performance compared with some other classic methods in three evaluation indicators:precision-recall curve,F-measure and mean absolute error.展开更多
Interactive image segmentation aims at classifying the image pixels into foreground and background classes given some foreground and background markers. In this paper, we propose a novel framework for interactive imag...Interactive image segmentation aims at classifying the image pixels into foreground and background classes given some foreground and background markers. In this paper, we propose a novel framework for interactive image segmentation that builds upon graph-based manifold ranking model, a graph-based semi-supervised learning technique which can learn very smooth functions with respect to the intrinsic structure revealed by the input data. The final segmentation results are improved by overcoming two core problems of graph construction in traditional models: graph structure and graph edge weights. The user provided scribbles are treated as the must-link and must-not-link constraints. Then we model the graph as an approximatively k-regular sparse graph by integrating these constraints and our extended neighboring spatial relationships into graph structure modeling. The content and labels driven locally adaptive kernel parameter is proposed to tackle the insufficiency of previous models which usually employ a unified kernel parameter. After the graph construction,a novel three-stage strategy is proposed to get the final segmentation results. Due to the sparsity and extended neighboring relationships of our constructed graph and usage of superpixels, our model can provide nearly real-time, user scribble insensitive segmentations which are two core demands in interactive image segmentation. Last but not least, our framework is very easy to be extended to multi-label segmentation,and for some less complicated scenarios, it can even get the segmented object through single line interaction. Experimental results and comparisons with other state-of-the-art methods demonstrate that our framework can efficiently and accurately extract foreground objects from background.展开更多
In this article thc concept of local conjugation of a C^1 mapping between two Banach manifolds is introduced. Thcn a rank theorem for nonlinear scmi-Fredholm operators between two Banach manifolds and a finite rank th...In this article thc concept of local conjugation of a C^1 mapping between two Banach manifolds is introduced. Thcn a rank theorem for nonlinear scmi-Fredholm operators between two Banach manifolds and a finite rank theorem are established in global analysis.展开更多
In this work, we introduce the new concept of fourth rank energy-momentum tensor. We first show that a fourth rank electromagnetic energy-momentum tensor can be constructed from the second rank electromagnetic energy-...In this work, we introduce the new concept of fourth rank energy-momentum tensor. We first show that a fourth rank electromagnetic energy-momentum tensor can be constructed from the second rank electromagnetic energy-momentum tensor. We then generalise to construct a fourth rank stress energy-momentum tensor and apply it to Dirac field of quantum particles. Furthermore, since the established fourth rank energy-momentum tensors have mathematical properties of the Riemann curvature tensor, thus it is reasonable to suggest that quantum fields should also possess geometric structures of a Riemannian manifold.展开更多
在许多数据分析任务中,经常会遇到高维数据。特征选择技术旨在从原始高维数据中找到最具代表性的特征,但由于缺乏类标签信息,相比有监督场景,在无监督学习场景中选择合适的特征困难得多。传统的无监督特征选择方法通常依据某些准则对样...在许多数据分析任务中,经常会遇到高维数据。特征选择技术旨在从原始高维数据中找到最具代表性的特征,但由于缺乏类标签信息,相比有监督场景,在无监督学习场景中选择合适的特征困难得多。传统的无监督特征选择方法通常依据某些准则对样本的特征进行评分,在这个过程中样本是被无差别看待的。然而这样做并不能完全捕捉数据的内在结构,不同样本的重要性应该是有差异的,并且样本权重与特征权重之间存在一种对偶关系,它们会互相影响。为此,提出了一种基于对偶流形重排序的无监督特征选择算法(Unsupervised Feature Selection Algorithm based on Dual Manifold Re-Ranking, DMRR),分别构建不同的相似性矩阵来刻画样本与样本、特征与特征、样本与特征的流形结构,并结合样本与特征的初始得分进行流形上的重排序。将DMRR与3种原始无监督特征选择算法以及2种无监督特征选择后处理算法进行比较,实验结果表明样本重要性信息、样本与特征之间的对偶关系有助于实现更优的特征选择。展开更多
为了实现快速成像,磁共振指纹(Magnetic Resonance Fingerprinting,MRF)技术通常使用非笛卡尔稀疏采样模板对K空间进行高度欠采样,从而获得稀疏K空间信号.然而,从稀疏的K空间信号重建像空间数据是一个病态不适定问题,重建出的MRF像空间...为了实现快速成像,磁共振指纹(Magnetic Resonance Fingerprinting,MRF)技术通常使用非笛卡尔稀疏采样模板对K空间进行高度欠采样,从而获得稀疏K空间信号.然而,从稀疏的K空间信号重建像空间数据是一个病态不适定问题,重建出的MRF像空间数据存在大量的混叠伪影,直接影响到组织生理参数的重建准确度.为此需要将各种先验知识引入重建模型之中,以缓解MRF重建问题的不适定性.针对上述问题,本文提出一种融合局部低秩先验与Bloch流形约束的MRF重建模型,并使用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)求解模型中的非凸MRF重建问题.本文算法在引入MRF像空间数据的局部低秩先验的同时,使用预先构建的字典为重建指纹提供流形约束.一方面通过空域局部低秩约束有效抑制混叠伪影的产生,另一方面利用字典先验避免指纹的时域流形特征在迭代重建过程中丢失.仿真实验结果表明,相较于引入了全局低秩先验与Bloch流形约束的其他同类算法,本文算法可以提供更高的组织参数重建准确度.展开更多
基金funded by the National Natural Science Foundation of China under project No.61231014 and No.61572264,respectivelysupported by Defense Advanced Research Projects Agency (No.HR001110-C-0034)+1 种基金the National Science Foundation (No.BCS-0827764)the Army Research Office (No.W911NF-08-1-0360)
文摘Salient object detection remains one of the most important and active research topics in computer vision,with wide-ranging applications to object recognition,scene understanding,image retrieval,context aware image editing,image compression,etc. Most existing methods directly determine salient objects by exploring various salient object features.Here,we propose a novel graph based ranking method to detect and segment the most salient object in a scene according to its relationship to image border(background) regions,i.e.,the background feature.Firstly,we use regions/super-pixels as graph nodes,which are fully connected to enable both long range and short range relations to be modeled. The relationship of each region to the image border(background) is evaluated in two stages:(i) ranking with hard background queries,and(ii) ranking with soft foreground queries. We experimentally show how this two-stage ranking based salient object detection method is complementary to traditional methods,and that integrated results outperform both. Our method allows the exploitation of intrinsic image structure to achieve high quality salient object determination using a quadratic optimization framework,with a closed form solution which can be easily computed.Extensive method evaluation and comparison using three challenging saliency datasets demonstrate that our method consistently outperforms 10 state-of-theart models by a big margin.
基金Supported by National Natural Science Foundation of China(No.81202858)National Key Technology Support Program(No.2012BAI25B02)+1 种基金Self-selected Subject of China Academyof Chinese Medical Sciences(No.ZZ05003,No.ZZ03090,No.Z0217)the Beijing Key Laboratory of Advanced Information Science and Network Technology(No.XDXX1306)
文摘Treatment determination based on syndrome differentiation is the key of Chinese medicine. A feasible way of improving the clinical therapy effectiveness is needed to correctly differentiate the syndrome classifications based on the clinical manifestations. In this paper, a novel data mining method based on manifold ranking (MR) is proposed to explore the relation between syndromes and symptoms for viral hepatitis. Since MR could take the symptom data with expert differentiation and the symptom data without expert differentiation into the task of syndrome classification, the clinical information used for modeling the syndrome features is greatly enlarged so as to improve the precise of syndrome classification. In addition, the proposed method of syndrome classification could also avoid two disadvantages in previous methods: linear relation of the clinical data and mutually exclusive symptoms among different syndromes. And it could help exploit the latent relation between syndromes and symptoms more effectively. Better performance of syndrome classification is able to be achieved according to the experimental results and the clinical experts.
文摘An audio information retrieval model based on Manifold Ranking(MR) is proposed, and ranking results are improved using a Relevance Feedback(RF) algorithm. Timbre components are employed as the model’s main feature. To compute timbre similarity, extracting the spectrum features for each frame is necessary; the large set of frames is clustered using a Gaussian Mixture Model(GMM) and expectation maximization. The typical spectra frame from GMM is drawn as data points, and MR assigns each data point a relative ranking score, which is treated as a distance instead of as traditional similarity metrics based on pair-wise distance. Furthermore, the MR algorithm can be easily generalized by adding positive and negative examples from the RF algorithm and improves the final result. Experimental results show that the proposed approach effectively improves the ranking capabilities of existing distance functions.
文摘The graph-based manifold ranking saliency detection only relies on the boundary background to extract foreground seeds,resulting in a poor saliency detection result,so a method that obtains robust foreground for manifold ranking is proposed in this paper.First,boundary connectivity is used to select the boundary background for manifold ranking to get a preliminary saliency map,and a foreground region is acquired by a binary segmentation of the map.Second,the feature points of the original image and the filtered image are obtained by using color boosting Harris corners to generate two different convex hulls.Calculating the intersection of these two convex hulls,a final convex hull is found.Finally,the foreground region and the final convex hull are combined to extract robust foreground seeds for manifold ranking and getting final saliency map.Experimental results on two public image datasets show that the proposed method gains improved performance compared with some other classic methods in three evaluation indicators:precision-recall curve,F-measure and mean absolute error.
基金supported by NSFC (National Natural Science Foundation of China, No. 61272326)the research grant of University of Macao (No. MYRG202(Y1L4)-FST11-WEH)the research grant of University of Macao (No. MYRG2014-00139-FST)
文摘Interactive image segmentation aims at classifying the image pixels into foreground and background classes given some foreground and background markers. In this paper, we propose a novel framework for interactive image segmentation that builds upon graph-based manifold ranking model, a graph-based semi-supervised learning technique which can learn very smooth functions with respect to the intrinsic structure revealed by the input data. The final segmentation results are improved by overcoming two core problems of graph construction in traditional models: graph structure and graph edge weights. The user provided scribbles are treated as the must-link and must-not-link constraints. Then we model the graph as an approximatively k-regular sparse graph by integrating these constraints and our extended neighboring spatial relationships into graph structure modeling. The content and labels driven locally adaptive kernel parameter is proposed to tackle the insufficiency of previous models which usually employ a unified kernel parameter. After the graph construction,a novel three-stage strategy is proposed to get the final segmentation results. Due to the sparsity and extended neighboring relationships of our constructed graph and usage of superpixels, our model can provide nearly real-time, user scribble insensitive segmentations which are two core demands in interactive image segmentation. Last but not least, our framework is very easy to be extended to multi-label segmentation,and for some less complicated scenarios, it can even get the segmented object through single line interaction. Experimental results and comparisons with other state-of-the-art methods demonstrate that our framework can efficiently and accurately extract foreground objects from background.
基金This research was supported by the National Natural Science Foundation of China (10271053)the Doctoral Programme Foundation of the Ministry of Education of China
文摘In this article thc concept of local conjugation of a C^1 mapping between two Banach manifolds is introduced. Thcn a rank theorem for nonlinear scmi-Fredholm operators between two Banach manifolds and a finite rank theorem are established in global analysis.
文摘In this work, we introduce the new concept of fourth rank energy-momentum tensor. We first show that a fourth rank electromagnetic energy-momentum tensor can be constructed from the second rank electromagnetic energy-momentum tensor. We then generalise to construct a fourth rank stress energy-momentum tensor and apply it to Dirac field of quantum particles. Furthermore, since the established fourth rank energy-momentum tensors have mathematical properties of the Riemann curvature tensor, thus it is reasonable to suggest that quantum fields should also possess geometric structures of a Riemannian manifold.
文摘在许多数据分析任务中,经常会遇到高维数据。特征选择技术旨在从原始高维数据中找到最具代表性的特征,但由于缺乏类标签信息,相比有监督场景,在无监督学习场景中选择合适的特征困难得多。传统的无监督特征选择方法通常依据某些准则对样本的特征进行评分,在这个过程中样本是被无差别看待的。然而这样做并不能完全捕捉数据的内在结构,不同样本的重要性应该是有差异的,并且样本权重与特征权重之间存在一种对偶关系,它们会互相影响。为此,提出了一种基于对偶流形重排序的无监督特征选择算法(Unsupervised Feature Selection Algorithm based on Dual Manifold Re-Ranking, DMRR),分别构建不同的相似性矩阵来刻画样本与样本、特征与特征、样本与特征的流形结构,并结合样本与特征的初始得分进行流形上的重排序。将DMRR与3种原始无监督特征选择算法以及2种无监督特征选择后处理算法进行比较,实验结果表明样本重要性信息、样本与特征之间的对偶关系有助于实现更优的特征选择。
文摘为了实现快速成像,磁共振指纹(Magnetic Resonance Fingerprinting,MRF)技术通常使用非笛卡尔稀疏采样模板对K空间进行高度欠采样,从而获得稀疏K空间信号.然而,从稀疏的K空间信号重建像空间数据是一个病态不适定问题,重建出的MRF像空间数据存在大量的混叠伪影,直接影响到组织生理参数的重建准确度.为此需要将各种先验知识引入重建模型之中,以缓解MRF重建问题的不适定性.针对上述问题,本文提出一种融合局部低秩先验与Bloch流形约束的MRF重建模型,并使用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)求解模型中的非凸MRF重建问题.本文算法在引入MRF像空间数据的局部低秩先验的同时,使用预先构建的字典为重建指纹提供流形约束.一方面通过空域局部低秩约束有效抑制混叠伪影的产生,另一方面利用字典先验避免指纹的时域流形特征在迭代重建过程中丢失.仿真实验结果表明,相较于引入了全局低秩先验与Bloch流形约束的其他同类算法,本文算法可以提供更高的组织参数重建准确度.