In this paper, we mainly deal with a class of higher-order coupled Kirch-hoff-type equations. At first, we take advantage of Hadamard’s graph to get the equivalent form of the original equations. Then, the inertial m...In this paper, we mainly deal with a class of higher-order coupled Kirch-hoff-type equations. At first, we take advantage of Hadamard’s graph to get the equivalent form of the original equations. Then, the inertial manifolds are proved by using spectral gap condition. The main result we gained is that the inertial manifolds are established under the proper assumptions of M(s) and gi(u,v), i=1, 2.展开更多
Let D be a bounded domain with piecewise C^(1) smooth orientable boundary on Stein manifolds, and let Φ(z) be a Cauchy type integral with Bochner-Martinelli kernel Ω(φ^V, S^-, S) and Holder continuous density...Let D be a bounded domain with piecewise C^(1) smooth orientable boundary on Stein manifolds, and let Φ(z) be a Cauchy type integral with Bochner-Martinelli kernel Ω(φ^V, S^-, S) and Holder continuous density function φ(ζ), the authors define a solid angular coefficient α(t) at the point t∈δD, prove that there exist the interior and outer limit values Φ^±(t) under the meaning of the Cauchy principal value, and obtain the more general Plemelj formula and jump formula.展开更多
In this paper the authors investigate hypersurfaces M of a semi-Euclidean space E9n+1, n > 4, satisfying (aC + BR) .H = LkQ(g, Hk), k = 1,2, 3. Using obtained results they show additional curvature properties of in...In this paper the authors investigate hypersurfaces M of a semi-Euclidean space E9n+1, n > 4, satisfying (aC + BR) .H = LkQ(g, Hk), k = 1,2, 3. Using obtained results they show additional curvature properties of investigated hypersurfaces.展开更多
Using non-linear connection of Finsler manifold M, the existence of local coordinates which is normalized at a point x is proved, and the Laplace operator A on 1-form of M is defined by non-linear connection and its c...Using non-linear connection of Finsler manifold M, the existence of local coordinates which is normalized at a point x is proved, and the Laplace operator A on 1-form of M is defined by non-linear connection and its curvature tensor. After proving the maximum principle theorem of Hopf-Bochner on M, the Bochner type vanishing theorem of Killing vectors and harmonic 1-form are obtained.展开更多
This paper deals with a class of parabolic Monge-Ampère equation on Riemannian manifolds. The existence and uniqueness of the solution to the first initial-boundary value problem for the equation are established.
文摘In this paper, we mainly deal with a class of higher-order coupled Kirch-hoff-type equations. At first, we take advantage of Hadamard’s graph to get the equivalent form of the original equations. Then, the inertial manifolds are proved by using spectral gap condition. The main result we gained is that the inertial manifolds are established under the proper assumptions of M(s) and gi(u,v), i=1, 2.
文摘Let D be a bounded domain with piecewise C^(1) smooth orientable boundary on Stein manifolds, and let Φ(z) be a Cauchy type integral with Bochner-Martinelli kernel Ω(φ^V, S^-, S) and Holder continuous density function φ(ζ), the authors define a solid angular coefficient α(t) at the point t∈δD, prove that there exist the interior and outer limit values Φ^±(t) under the meaning of the Cauchy principal value, and obtain the more general Plemelj formula and jump formula.
基金a grant of the Uludag University in Bursa(Turkey)and the grant 234 GW 2000 of the Agricultural University of Wroclaw(Poland)for the second named author
文摘In this paper the authors investigate hypersurfaces M of a semi-Euclidean space E9n+1, n > 4, satisfying (aC + BR) .H = LkQ(g, Hk), k = 1,2, 3. Using obtained results they show additional curvature properties of investigated hypersurfaces.
基金Project supported by the Natural Science Foundation of China(10271097)
文摘Using non-linear connection of Finsler manifold M, the existence of local coordinates which is normalized at a point x is proved, and the Laplace operator A on 1-form of M is defined by non-linear connection and its curvature tensor. After proving the maximum principle theorem of Hopf-Bochner on M, the Bochner type vanishing theorem of Killing vectors and harmonic 1-form are obtained.
文摘This paper deals with a class of parabolic Monge-Ampère equation on Riemannian manifolds. The existence and uniqueness of the solution to the first initial-boundary value problem for the equation are established.