To study the characteristics of the 5-prismatic–spherical–spherical(PSS)/universal–prismatic–universal(UPU)parallel mechanism with elastically active branched chains,the dynamics modeling and solutions of the para...To study the characteristics of the 5-prismatic–spherical–spherical(PSS)/universal–prismatic–universal(UPU)parallel mechanism with elastically active branched chains,the dynamics modeling and solutions of the parallel mechanism were investigated.First,the active branched chains and screw sliders were considered as spatial beam elements and plane beam element models,respectively,and the dynamic equations of each element model were derived using the Lagrange method.Second,the equations of the 5-PSS/UPU parallel mechanism were obtained according to the kinematic coupling relationship between the active branched chains and moving platform.Finally,based on the parallel mechanism dynamic equations,the natural frequency distribution of the 5-PSS/UPU parallel mechanism in the working space and elastic displacement of the moving platform were obtained.The results show that the natural frequency of the 5-PSS/UPU parallel mechanism under a given motion situation is greater than its operating frequency.The maximum position error is -0.096 mm in direction Y,and the maximum orientation error is -0.29°around the X-axis.The study provides important information for analyzing the dynamic performance,dynamic optimization design,and dynamic control of the 5-PSS/UPU parallel mechanism with elastically active branched chains.展开更多
The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This s...The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.展开更多
A special form of the Stewart platform is presented in which the top platform and base platform are similar and corresponding vertices are connected by six prismatic joints.A closed-from solution for the forward displ...A special form of the Stewart platform is presented in which the top platform and base platform are similar and corresponding vertices are connected by six prismatic joints.A closed-from solution for the forward displacement analysis of this mechanism is developed.When the six vertices of the top platform are in a quadratic curve,this mechanism becomes singular.This new theoretical result is confirmed with a numerical example.展开更多
Lion dance is a very popular and lively Chinese traditional art form.A robotic project in Singapore has been dedicated to the design and demonstration for similar traditional art forms using modern mechatronics techno...Lion dance is a very popular and lively Chinese traditional art form.A robotic project in Singapore has been dedicated to the design and demonstration for similar traditional art forms using modern mechatronics technology.This paper deals with a novel six-degree-of-freedom (6-DOF) hybrid manipulator with high stiffness,high loading capability and high dexterity,mimicking the lion dancer's upper body motions along with the lion head movements.The design of the hybrid manipulator consists of a 2-DOF torso structure in serial configuration and a 4-DOF dual arm structure in parallel configuration.The combined 6-DOF hybrid manipulator can support the weight and dynamics of the lion head during the lion dance performance.Forward kinematics of the manipulator has been formulated and visualized for design purposes.Inverse kinematics of the hybrid manipulator were analytically derived for real-time motion control.Based on the design and modeling,a complete hybrid manipulator has been fabricated,implemented into the robotic lion,and successfully demonstrated for real robotic lion dance performance.展开更多
基金Supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LR18E050003)National Natural Science Foundation of China (Grant Nos. 51975523,51905481)+1 种基金Postdoctoral Preferred Funding Project of Zhejiang Province (Grant No. zj2019019)Open Foundation of the Key Laboratory of E&M,Ministry of Education&Zhejiang Province (Grant No. EM2019120102)
文摘To study the characteristics of the 5-prismatic–spherical–spherical(PSS)/universal–prismatic–universal(UPU)parallel mechanism with elastically active branched chains,the dynamics modeling and solutions of the parallel mechanism were investigated.First,the active branched chains and screw sliders were considered as spatial beam elements and plane beam element models,respectively,and the dynamic equations of each element model were derived using the Lagrange method.Second,the equations of the 5-PSS/UPU parallel mechanism were obtained according to the kinematic coupling relationship between the active branched chains and moving platform.Finally,based on the parallel mechanism dynamic equations,the natural frequency distribution of the 5-PSS/UPU parallel mechanism in the working space and elastic displacement of the moving platform were obtained.The results show that the natural frequency of the 5-PSS/UPU parallel mechanism under a given motion situation is greater than its operating frequency.The maximum position error is -0.096 mm in direction Y,and the maximum orientation error is -0.29°around the X-axis.The study provides important information for analyzing the dynamic performance,dynamic optimization design,and dynamic control of the 5-PSS/UPU parallel mechanism with elastically active branched chains.
基金Supported by National Natural Science Foundation of China (Grant No.52275036)Key Research and Development Project of the Jiaxing Science and Technology Bureau (Grant No.2022BZ10004)。
文摘The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.
文摘A special form of the Stewart platform is presented in which the top platform and base platform are similar and corresponding vertices are connected by six prismatic joints.A closed-from solution for the forward displacement analysis of this mechanism is developed.When the six vertices of the top platform are in a quadratic curve,this mechanism becomes singular.This new theoretical result is confirmed with a numerical example.
基金supported by the collaboration between Nanyang Technological University (NTU) and Singapore Institute of Manufacturing Technology (SIMTech) under Agency for Science,Technology and Research (ASTAR)
文摘Lion dance is a very popular and lively Chinese traditional art form.A robotic project in Singapore has been dedicated to the design and demonstration for similar traditional art forms using modern mechatronics technology.This paper deals with a novel six-degree-of-freedom (6-DOF) hybrid manipulator with high stiffness,high loading capability and high dexterity,mimicking the lion dancer's upper body motions along with the lion head movements.The design of the hybrid manipulator consists of a 2-DOF torso structure in serial configuration and a 4-DOF dual arm structure in parallel configuration.The combined 6-DOF hybrid manipulator can support the weight and dynamics of the lion head during the lion dance performance.Forward kinematics of the manipulator has been formulated and visualized for design purposes.Inverse kinematics of the hybrid manipulator were analytically derived for real-time motion control.Based on the design and modeling,a complete hybrid manipulator has been fabricated,implemented into the robotic lion,and successfully demonstrated for real robotic lion dance performance.