A neuro-sliding-mode control (NSMC) strategy was developed to handle the complex nonlinear dynamics and model uncertainties of flexible-link manipulators. A composite controller was designed based on a singularly pe...A neuro-sliding-mode control (NSMC) strategy was developed to handle the complex nonlinear dynamics and model uncertainties of flexible-link manipulators. A composite controller was designed based on a singularly perturbed model of flexible-link manipulators when the rigid motion and flexible motion are decoupled. The NSMC is employed to control the slow subsystem to track a desired trajectory with a tradi- tional sliding mode controller to stabilize the fast subsystem which represents the link vibrations. A stability analysis of the flexible modes is also given. Simulations confirm that the NSMC performs better than the tra- ditional sliding-mode control for controlling flexible-link manipulators. The control strategy not only gives good tracking performance for the joint angle, but also effectively suppresses endpoint vibrations. The simulations also show that the control strategy has a strong self-adaptive ability for controlling manipulators with different parameters.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60305008)the National Key Basic Research and Development (973) Program of China (No. 2002CB312205)
文摘A neuro-sliding-mode control (NSMC) strategy was developed to handle the complex nonlinear dynamics and model uncertainties of flexible-link manipulators. A composite controller was designed based on a singularly perturbed model of flexible-link manipulators when the rigid motion and flexible motion are decoupled. The NSMC is employed to control the slow subsystem to track a desired trajectory with a tradi- tional sliding mode controller to stabilize the fast subsystem which represents the link vibrations. A stability analysis of the flexible modes is also given. Simulations confirm that the NSMC performs better than the tra- ditional sliding-mode control for controlling flexible-link manipulators. The control strategy not only gives good tracking performance for the joint angle, but also effectively suppresses endpoint vibrations. The simulations also show that the control strategy has a strong self-adaptive ability for controlling manipulators with different parameters.