期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Three-Dimensional Mantle Flow and Temperature Structure Beneath the Shatsky Rise Ridge-Ridge-Ridge Triple Junction
1
作者 ZHANG Jinchang ZHOU Zhiyuan +1 位作者 DING Min LIN Jian 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第4期857-865,共9页
The Shatsky Rise ridge-ridge-ridge triple junction is an ancient triple junction in the Western Pacific Ocean whose initial geodynamic process is poorly understood and can only be inferred based on indirect geological... The Shatsky Rise ridge-ridge-ridge triple junction is an ancient triple junction in the Western Pacific Ocean whose initial geodynamic process is poorly understood and can only be inferred based on indirect geological and geophysical constraints.In this paper,we present three-dimensional numerical models that simulate the Shatsky Rise triple junction and calculate its coupled mantle flow and temperature structure.The mantle flow velocity field shows several distinctive features:1)stronger mantle upwelling closer to the ridge axis and triple junction;2)greater upwelling velocity at the faster-spreading ridges;and 3)the most significant increase in upwelling velocity for the slowest-spreading ridge toward the triple junction.The calculated mantle temperature field also reveals distinctive characteristics:1)sharp increases in the mantle temperature with depth and increases toward the spreading ridges and triple junction;2)the faster-spreading ridges are associated with higher temperatures at depth and identical distances from the triple junction;and 3)the slowest-spreading ridge shows the greatest increase in the along-ridge-axis temperature toward the triple junction.Compared to many present-day triple junctions with slower spreading rates,the along-ridge-axis velocity and thermal fields of the Shatsky Rise are more altered due to the presence of the triple junction. 展开更多
关键词 triple junction mid-ocean ridge Shatsky Rise numerical modeling mantle flow mantle temperature
下载PDF
Compositional and temperature variations of the Pacific upper mantle since the Cretaceous
2
作者 ZHANG Guoliang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第4期19-25,共7页
The geological evolution of the Earth during the mid-Cretaceous were shown to be anomalous, e.g., the pause of the geomagnetic field, the global sea level rise, and increased intra-plate volcanic activities, which cou... The geological evolution of the Earth during the mid-Cretaceous were shown to be anomalous, e.g., the pause of the geomagnetic field, the global sea level rise, and increased intra-plate volcanic activities, which could be attributed to deep mantle processes. As the anomalous volcanic activities occurred mainly in the Cretaceous Pacific, here we use basalt chemical compositions from the oceanic drilling(DSDP/ODP/IODP) sites to investigate their mantle sources and melting conditions. Based on locations relative to the Pacific plateaus, we classified these sites as oceanic plateau basalts, normal mid-ocean ridge basalts, and near-plateau seafloor basalts. This study shows that those normal mid-ocean ridge basalts formed during mid-Cretaceous are broadly similar in average Na8, La/Sm and Sm/Yb ratios and Sr-Nd isotopic compositions to modern Pacific spreading ridge(the East Pacific Rise). The Ontong Java plateau(125–90 Ma) basalts have distinctly lower Na8 and143Nd/144 Nd, and higher La/Sm and 87Sr/86 Sr than normal seafloor basalts, whereas those for the near-plateau seafloor basalts are similar to the plateau basalts, indicating influences from the Ontong Java mantle source. The super mantle plume activity that might have formed the Ontong Java plateau influenced the mantle source of the simultaneously formed large areas of seafloor basalts. Based on the chemical data from normal seafloor basalts, I propose that the mantle compositions and melting conditions of the normal mid-ocean ridges during the Cretaceous are similar to the fast spreading East Pacific Rise. Slight variations of mid-Cretaceous normal seafloor basalts in melting conditions could be related to the local mantle source and spreading rate. 展开更多
关键词 mantle temperature mantle source super mantle plume Cretaceous mid-ocean ridge basalt
下载PDF
Variations in melt supply along an orthogonal supersegment of the Southwest Indian Ridge(16°–25°E)
3
作者 Caicai Zha Jian Lin +3 位作者 Zhiyuan Zhou Xubo Zhang Min Xu Fan Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第5期94-104,共11页
The orthogonal supersegment of the ultraslow-spreading Southwest Indian Ridge at 16°–25°E is characterized by significant along-axis variations of mantle potential temperature.A detailed analysis of multibe... The orthogonal supersegment of the ultraslow-spreading Southwest Indian Ridge at 16°–25°E is characterized by significant along-axis variations of mantle potential temperature.A detailed analysis of multibeam bathymetry,gravity,and magnetic data were performed to investigate its variations in magma supply and crustal accretion process.The results revealed distinct across-axis variations of magma supply.Specifically,the regionally averaged crustal thickness reduced systematically from around 7 Ma to the present,indicating a regionally decreasing magma supply.The crustal structure is asymmetric in regional scale between the conjugate ridge flanks,with the faster-spreading southern flank showing thinner crust and greater degree of tectonic extension.Geodynamic models of mantle melting suggested that the observed variations in axial crustal thickness and major element geochemistry can be adequately explained by an eastward decrease in mantle potential temperature of about40℃ beneath the ridge axis.In this work,a synthesized model was proposed to explain the axial variations of magma supply and ridge segmentation stabilities.The existence of large ridge-axis offsets may play important roles in controlling melt supply.Several large ridge-axis offsets in the eastern section(21°–25°E)caused sustained along-axis focusing of magma supply at the centers of eastern ridge segments,enabling quasi-stable segmentation.In contrast,the western section(16°–21°E),which lacks large ridge-axis offsets,is associated with unstable segmentation patterns. 展开更多
关键词 ultraslow-spreading ridge Southwest Indian Ridge ridge segmentation asymmetric accretion melt supply mantle temperature gradient
下载PDF
Petrology and geochemistry of South Mid-Atlantic Ridge(19°S) lava flows:Implications for magmatic processes and possible plume-ridge interactions
4
作者 Haitao Zhang Xuefa Shi +7 位作者 Chuanshun Li Quanshu Yan Yaomin Yang Zhiwei Zhu Hui Zhang Sai Wang Yili Guan Renjie Zhao 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第6期1953-1973,共21页
The South Mid-Atlantic Ridge(SMAR)19°S segment,approximately located along the line of Saint Helena volcanic chain(created by Saint Helena mantle plume),is an ideal place to investigate the issue whether the ridg... The South Mid-Atlantic Ridge(SMAR)19°S segment,approximately located along the line of Saint Helena volcanic chain(created by Saint Helena mantle plume),is an ideal place to investigate the issue whether the ridgehotpot interaction process affected the whole MAR.In this study,we present major and trace elemental compositions and Sr-Nd-Pb isotopic ratios of twenty fresh lava samples concentrated in a relatively small area in the SMAR 19°S segment.Major oxides compositions show that all samples are tholeiite.Low contents of compatible trace elements(e.g.,Ni=239-594 ppm and Cr=456-1010 ppm)and low Fe/Mn(54-67)and Ce/Yb(0.65-1.5)ratios of these lavas show that their parental magmas are partially melted by a spinel lherzolite mantle source.Using software PRIMELT3,this study obtained mantle potential temperatures(Tp)beneath the segment of1321-1348℃,which is lower relative to those ridges influenced by mantle plumes.The asthenospheric mantle beneath the SMAR 19°S segment starts melting at a depth of^63 km and ceases melting at^43 km with a final melting temperature of^1265℃.The extent of partial melting is up to 16%-17.6%with an average adiabatic decompression value of 2.6%/kbar.The correlations of major oxides(CaO/Al2 O3)and trace elements(Cr,Co,V)with MgO and Zr show that the parental magma experienced olivine and plagioclase fractional crystallization during its ascent to the surface.87Sr/86Sr(0.702398-0.702996),143 Nd/144 Nd(0.513017-0.513177)and 206Pb/204Pb(18.444-19.477)ratios of these lavas indicate the mantle source beneath the SMAR 19°S segment is composed of a three-component mixture of depleted MORB mantle,PREMA mantle,and HIMU mantle materials.The simple,binary mixing results among components from plume-free SMAR MORB,Saint Helena plume and Tristan plume show that asthenospheric mantle beneath the SMAR 19°S segment may be polluted by both Saint Helena and Tristan plume enriched materials.The abovementioned mantle potential temperatures,together with the low Saint Helena(<10%)and Tristan(<5%)components remaining in the asthenospheric mantle at present,show that the physically ridge-hotspot interactions at SMAR 19°S segment may have ceased.However,the trace element and SrNd-Pb isotopically binary mixing calculation results imply that these lavas tapped some enriched pockets left when Saint Helena and/or Tristan plume were once on the SMAR during earlier Atlantic rifted history. 展开更多
关键词 Magmatic process mantle potential temperature Crystallization pressure Plume-ridge interaction South Mid-Atlantic Ridge
下载PDF
First-principles calculations of elasticity of minerals at high temperature and pressure 被引量:4
5
作者 WU ZhongQing WANG WenZhong 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第6期1107-1137,共31页
The elasticity of minerals at high temperature and pressure (PT) is critical for constraining the composition and temperature of the Earth's interior and understand better the deep water cycle and the dynamic Earth... The elasticity of minerals at high temperature and pressure (PT) is critical for constraining the composition and temperature of the Earth's interior and understand better the deep water cycle and the dynamic Earth. First-principles calcula- tions without introducing any adjustable parameters, whose results can be comparable to experimental data, play a more and more important role in investigating the elasticity of minerals at high PT mainly because of (1) the quick increasing of computational powers and (2) advances in method. For example, the new method reduces the computation loads to one-tenth of the traditional method with the comparable precise as the traditional method. This is extraordinarily helpful because first-principles calculations of the elasticity of minerals at high PT are extremely time-consuming. So far the elasticity of most of lower mantle minerals has been investigated in detail. We have good idea on the effect of temperature, pressure, and iron concentration on elasticity of main minerals of the lower mantle and the unusual softening in bulk modulus by the spin crosso- ver of iron in ferropericlase. With these elastic data the lower mantle has been constrained to have 10-15 wt% ferropericlase, which is sufficient to generate some visible effects of spin crossover in seismic tomography. For example, the spin crossover causes that the temperature sensitivity of P wave at the depth of -1700 km is only a fraction of that at the depth of -2300 kin. The disruptions of global P wave structure and of P wave image below hotspots such as Hawaii and Iceland at similar depth are in consistence with the spin crossover effect of iron in ferropericlase. The spin crossover, which causes anomalous ther- modynamic properties of ferropericlase, has also been found to play a control role for the two features of the large low shear velocity provinces (LLSVPs): the sharp edge and high elevation up to 1000 km above core-mantle boundary. All these results clearly suggest the spin crossover of iron in the lower mantle. The theoretical investigations for the elasticity of minerals at the upper mantle and water effect on elasticity of minerals at the mantle transition zone and subducting slab have also been con- ducted extensively. These researches are critical for understanding better the composition of the upper mantle and water dis- tribution and transport in the Earth's mantle. Most of these were static calculations, which did not include the vibrational (temperature) effect on elasticity, although temperature effect on elasticity is basic because of high temperature at the Earth's interior and huge temperature difference between the ambient mantle and the subducting slab. Including temperature effect on elasticity of minerals should be important future work. New method developed is helpful for these directions. The elasticity of iron and iron-alloy with various light elements has also been calculated extensively. However, more work is necessary in order to meet the demand for constraining the types and amount of light elements at the Earth's core. Keywords Mantle temperature, Mantle composition, Composition of Earth's core, Ab initio method 展开更多
关键词 mantle temperature mantle composition Composition of Earth's core Ab initio method
原文传递
Hugoniot equation of state of olivine and its geodynamic implications
6
作者 HUANG Xiao Ge YUAN Xian Hao +2 位作者 CHEN Zu An LIU Fu Sheng BAI Wu Ming 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第3期619-625,共7页
Large olivine samples were hot-pressed synthesized for shock wave experiments. The shock wave experiments were carried out at pressure range between 11 and 42 GPa. Shock data on olivine sample yielded a linear relatio... Large olivine samples were hot-pressed synthesized for shock wave experiments. The shock wave experiments were carried out at pressure range between 11 and 42 GPa. Shock data on olivine sample yielded a linear relationship between shock wave velocity D and particle velocity u described by D=3.56(?0.13)+2.57(?0.12)u. The shock temperature is determined by an energy relationship which is approximately 790°C at pressure 28 GPa. Due to low temperature and short experimental duration, we suggest that no phase change occurred in our sample below 30 GPa and olivine persisted well beyond its equilibrium boundary in metastable phase. The densities of metastable olivine are in agreement with the results of static compression. At the depth shallower than 410 km, the densities of metastable olivine are higher than those of the PREM model, facilitating cold slab to sink into the mantle transition zone. However, in entire mantle transition zone, the shock densities are lower than those of the PREM model, hampering cold slab to flow across the "660 km" phase boundary. 展开更多
关键词 Hugonite density Shock temperature Olivine mantle transition zone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部