期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Importance of initial buoyancy field on evolution of mantle thermal structure:Implications of surface boundary conditions
1
作者 Petar Gliovi Alessandro M.Forte 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第1期3-22,共20页
Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant... Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., p/ate-like boundary condition). As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid) boundary condition. A rigid boundary condition dem- onstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like) on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-lndonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present- day Large Low Shear Velocity Provinces (LLSVPs), especially below the Pacific. The evolution of sub- duction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long- lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique slow feature distinct from the two principal LLSVPs. We find there is no need for dense chemical 'piles' in the lower mantle to generate a stable distribution of temperature anomalies that are correlated to the LLSVPs and the Perm Anomaly. Our tomography-based convection simulations also demonstrate that intraplate volcanism in the south-east Pacific may be interpreted in terms of shallow small-scale convection triggered by a superplume beneath the East Pacific Rise. 展开更多
关键词 Dynamics: convection currents and mantleplumes HOTSPOTS Seismic tomography Planetary tectonics CMB topography Perm Anomaly
下载PDF
Early Permian Tarim Large Igneous Province in northwest China 被引量:13
2
作者 YANG ShuFeng CHEN HanLin +4 位作者 LI ZiLong LI YinQi YU Xing LI DongXu MENG LiFeng 《Science China Earth Sciences》 SCIE EI CAS 2013年第12期2015-2026,共12页
Tarim Large Igneous Province (TLIP) is the second Late Paleozoic LIPs in China after the recognition of Emeishan LIP, and is a hot research topic in geosciences. On the basis of the analysis of research history abou... Tarim Large Igneous Province (TLIP) is the second Late Paleozoic LIPs in China after the recognition of Emeishan LIP, and is a hot research topic in geosciences. On the basis of the analysis of research history about TLIP, this paper summarizes the re- search result during last twenty years and suggests the key research area in the future. The residual distribution range of TLIP is up to 250000 km2, and the largest residual thickness is 780 m. The eruption of basalt happened during 290-288 Ma and be- longs to LIPs magmatic event with fast eruption of magma. The lithological units of the TLIP include basalt, diabase, layered intrusive rock, breccia pipe mica-olivine pyroxenite, olivine pyroxenite, gabbro, ultramafic dyke, quartz syenite, quartz syenite porphyry and bimodal dyke. The basalt and diabase of TLIP exhibit OIB-like trace element patterns and enrichment of LILE and HFSE, and mainly belong to high TiO2 series. There is an obvious difference in isotope among the basalt from Keping and the basalt and dibase from the northern Tarim Basin. The basalt from Keping with negative eNa and high REE value derives from enriched mantle, and the diabase and basalt from the northern Tarim Basin with positive ENa and low REE value axe re- lated to depleted mantle. The crust uplifting in the Early Permian and the development of picrite and large scale dyke and for- mation of large scale V-Ti-Magnetite deposit in Wajilitag area support the view that the TLIP is related to mantle plume. The TLIP has a temporal-spatial relationship with Permian basic to ultra-basic igneous rock, which is distributed widely in Central Asia, and they represent a tectono-magmatic event with very important geodynamic setting. This paper also suggests that the deep geological process, the relation with mantle plume, mineralization, the relation with environmental change and biological evolution, and the geodynamics of the TLIP will be the key research topics in the future. 展开更多
关键词 Tarim Basin Early Permian Large Igneous Provinces temporal-spatial characteristic evolution of magma mantleplume
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部