期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Reverse Engineering of Machine-tool Settings with Modified Roll for Spiral Bevel Pinions 被引量:2
1
作者 LIU Guanglei CHANG Kai LIU Zeliang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期573-584,共12页
Although a great deal of research has been dedicated to the synthesis of spiral bevel gears, little related to reverse engineering can be found. An approach is proposed to reverse the machine-tool settings of the pini... Although a great deal of research has been dedicated to the synthesis of spiral bevel gears, little related to reverse engineering can be found. An approach is proposed to reverse the machine-tool settings of the pinion of a spiral bevel gear drive on the basis of the blank and tooth surface data obtained by a coordinate measuring machine(CMM). Real tooth contact analysis(RTCA) is performed to preliminary ascertain the contact pattern, the motion curve, as well as the position of the mean contact point. And then the tangent to the contact path and the motion curve are interpolated in the sense of the least square method to extract the initial values of the bias angle and the higher order coefficients(HOC) in modified roll motion. A trial tooth surface is generated by machine-tool settings derived from the local synthesis relating to the initial meshing performances and modified roll motion. An optimization objective is formed which equals the tooth surface deviation between the real tooth surface and the trial tooth surface. The design variables are the parameters describing the meshing performances at the mean contact point in addition to the HOC. When the objective is optimized within an arbitrarily given convergence tolerance, the machine-tool settings together with the HOC are obtained. The proposed approach is verified by a spiral bevel pinion used in the accessory gear box of an aviation engine. The trial tooth surfaces approach to the real tooth surface on the whole in the example. The results show that the convergent tooth surface deviation for the concave side on the average is less than 0.5 μm, and is less than 1.3 μm for the convex side. The biggest tooth surface deviation is 6.7 μm which is located at the corner of the grid on the convex side. Those nodes with relative bigger tooth surface deviations are all located at the boundary of the grid. An approach is proposed to figure out the machine-tool settings of a spiral bevel pinion by way of reverse engineering without having known the theoretical tooth surfaces and the corresponding machine-tool settings. 展开更多
关键词 spiral bevel gears pinion manufacture parameters modified roll real tooth contact analysis reverse engineering
下载PDF
The influence of manufacturing parameters and adding support layer on the properties of Zirfon separators 被引量:1
2
作者 Li XU Yue YU +3 位作者 Wei LI Yan YOU Wei XU Shaoxing ZHANG 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2014年第3期295-305,共11页
The composite separator comprising of polysulfone and zirconia was prepared by phase inversion precipitation technique. The influence of manufacturing parameters on its properties was investigated, and the results sho... The composite separator comprising of polysulfone and zirconia was prepared by phase inversion precipitation technique. The influence of manufacturing parameters on its properties was investigated, and the results show that the manufacturing parameters affect the ionic resistance and maximum pore size significantly. A modified composite separator with a support layer was prepared to enhance the tensile strength of separator. By adding support layer, the tensile strength of the separator increases from 1.85MPa to 13.66MPa. In order to evaluate the practical applicability of the composite separator, a small-scale industrial electrolytic experiment was conducted to investigate the changes of cell voltage, gas purity and separator stability. The results show that the modified composite separator has a smaller cell voltage and a higher H2 purity than the asbestos separator, and are promising material for industrial hydrogen production. 展开更多
关键词 SEPARATOR alkaline water electrolysis manufacturing parameters support layer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部