Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea...Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.展开更多
Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsi...Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.展开更多
China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the ...China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.展开更多
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue...Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.展开更多
Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-cond...Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.展开更多
Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the m...Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.展开更多
Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aero...Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aerospace,automotive,and other transport industries.However,their widespread application is hindered by their low formability at room temperature due to limited slip systems.Cast Mg-alloys have low mechanical properties due to the presence of casting defects such as porosity and anisotropy in addition to the high scrap.While casting methods benefit from established process optimization techniques for these problems,additive manufacturing methods are increasingly replacing casting methods in Mg alloys as they provide more precise control over the microstructure and allow specific grain orientations,potentially enabling easier optimization of anisotropy properties in certain applications.Although metal additive manufacturing(MAM)technology also results in some manufacturing defects such as inhomogeneous microstructural evolution and porosity and additively manufactured Mg alloy parts exhibit lower properties than the wrought parts,they in general exhibit superior properties than the cast counterparts.Thus,MAM is a promising technique to produce Mg alloy parts.Directed energy deposition processes,particularly wire arc directed energy deposition(WA-DED),have emerged as an advantageous additive manufacturing(AM)technique for metallic materials including magnesium alloys,offering advantages such as high deposition rates,improved material efficiency,and reduced production costs compared to subtractive processes.However,the inherent challenges associated with magnesium,such as its high reactivity and susceptibility to oxidation,pose unique hurdles in the application of this technology.This review paper delves into the progress made in the application of DED technology to Mg-alloys,its challenges,and prospects.Furthermore,the predominant imperfections,notably inhomogeneous microstructure evolution and porosity,observed in Mg-alloy components manufactured through DED are discussed.Additionally,the preventive measures implemented to counteract the formation of these defects are explored.展开更多
Machine tools,often referred to as the“mother machines”of the manufacturing industry,are crucial in developing smart manufacturing and are increasingly becoming more intelligent.Digital twin technology can promote m...Machine tools,often referred to as the“mother machines”of the manufacturing industry,are crucial in developing smart manufacturing and are increasingly becoming more intelligent.Digital twin technology can promote machine tool intelligence and has attracted considerable research interest.However,there is a lack of clear and systematic analyses on how the digital twin technology enables machine tool intelligence.Herein,digital twin modeling was identified as an enabling technology for machine tool intelligence based on a comparative study of the characteristics of machine tool intelligence and digital twin.The review then delves into state-of-the-art digital twin modelingenabled machine tool intelligence,examining it from the aspects of data-based modeling and mechanism-data dual-driven modeling.Additionally,it highlights three bottleneck issues facing the field.Considering these problems,the architecture of a digital twin machine tool(DTMT)is proposed,and three key technologies are expounded in detail:Data perception and fusion technology,mechanism-data-knowledge hybrid-driven digital twin modeling and virtual-real synchronization technology,and dynamic optimization and collaborative control technology for multilevel parameters.Finally,future research directions for the DTMT are discussed.This work can provide a foundation basis for the research and implementation of digital-twin modeling-enabled machine tool intelligence,making it significant for developing intelligent machine tools.展开更多
In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures...In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures and mechanical properties of the Al-5Mg-2Si alloy manufactured with different inclination angles(0°,30°,45°,60°and 90°)were reported and discussed.It is found that the“semicircular”melt pool(MP)in the load bearing face of 0°sample was eventually transformed into“stripe-like”MP in the 90°sample,accompanied by an increased fraction of melt pool boundaries(MPBs).Moreover,the microstructural analysis revealed that the columnar-to-equiaxed transition(CET)of theα-Al grains and eutectic Mg2Si was completed in the 90°sample,which were significantly refined with the average size of 10.6μm and 0.44μm,respectively.It is also found that the 90°sample exhibited good combination of strength and elongation(i.e.yield strength of 393 MPa,ultimate tensile strength of 483 MPa and elongation of 8.1%).The anisotropic mechanical properties were highly associated with the refined microstructures,thermal stress,and density of MPBs.Additionally,the CET driven by inclination angles was attributed to the variation of thermal conditions inside the local MPs.展开更多
The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturin...The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturing(DLAM)stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step.Over the last decade,sig-nificant and encouraging progress has been accomplished in DLAM of high-performance ceramics,including Al_(2)O_(3),ZrO_(2),Al_(2)O_(3)/ZrO_(2),SiC,and others.However,high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties,hindering their practical application in high-end equipment.Further improvements are necessary be-fore they can be widely adopted.Methods such as field-assisted techniques and post-processing can be employed to address these chal-lenges,but a more systematic review is needed.This work aims to critically review the advancements in direct selective laser sintering/melting(SLS/SLM)and laser directed energy deposition(LDED)for various ceramic material systems.Additionally,it provides an overview of the current challenges,future research opportunities,and potential applications associated with DLAM of high-perform-ance ceramics.展开更多
Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the med...Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the medical industries owing to their biodegradability and a lower elastic modulus comparable to bone.The ability to manufacture near-net shape products featuring intricate geometries has sparked huge interest in additive manufacturing(AM)of Mg alloys,reflecting a transformation in the manufacturing sectors.However,AM of Mg alloys presents more formidable challenges due to inherent properties,particularly susceptibility to oxidation,gas trapping,high thermal expansion coefficient,and low solidification temperature.This leads to defects such as porosity,lack of fusion,cracking,delamination,residual stresses,and inhomogeneity,ultimately influencing the mechanical,corrosion,and surface properties of AM Mg alloys.To address these issues,post-processing of AM Mg alloys are often needed to make them suitable for application.The present article reviews all post-processing techniques adapted for AM Mg alloys to date,including heat treatment,hot isostatic pressing,friction stir processing,and surface peening.The utilization of these methods within the hybrid AM process,employing interlayer post-processing,is also discussed.Optimal post-processing conditions are reported,and their influence on the microstructure,mechanical,and corrosion properties are detailed.Additionally,future prospects and research directions are proposed.展开更多
Mask image projection-based vat photopolymerization(MIP-VPP)offers advantages like low cost,high resolution,and a wide material range,making it popular in industry and education.Recently,MIP-VPP employing liquid cryst...Mask image projection-based vat photopolymerization(MIP-VPP)offers advantages like low cost,high resolution,and a wide material range,making it popular in industry and education.Recently,MIP-VPP employing liquid crystal displays(LCDs)has gained traction,increasingly replacing digital micromirror devices,particularly among hobbyists and in educational settings,and is now beginning to be used in industrial environments.However,LCD-based MIP-VPPsuffers from pronounced pixelated aliasing arising from LCD’s discrete image pixels and itsdirect-contact configuration in MIP-VPP machines,leading to rough surfaces on the 3D-printed parts.Here,we propose a vibration-assisted MIP-VPP method that utilizes a microscalevibration to uniformize the light intensity distribution of the LCD-based mask image on VPP’s building platform.By maintaining the same fabrication speed,our technique generates asmoother,non-pixelated mask image,reducing the roughness on flat surfaces and boundary segments of 3D-printed parts.Through light intensity modeling and simulation,we derived an optimal vibration pattern for LCD mask images,subsequently validated by experiments.We assessed the surface texture,boundary integrity,and dimensional accuracy of componentsproduced using the vibration-assisted approach.The notably smoother surfaces and improved boundary roughness enhance the printing quality of MIP-VPP,enabling its promisingapplications in sectors like the production of 3D-printed optical devices and others.展开更多
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ...Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.展开更多
Magnesium(Mg)and its alloys have recently gained increasing attention in the biomedical field as promising biodegradable materials with harmless degradation products.Magnesium-based alloys have a wide range of biomedi...Magnesium(Mg)and its alloys have recently gained increasing attention in the biomedical field as promising biodegradable materials with harmless degradation products.Magnesium-based alloys have a wide range of biomedical applications because of their outstanding biocompatibility and unique mechanical properties.Widespread use of Mg-based biomedical devices eliminates the need for post-healing biomaterial removal surgery and minimizes the negative consequences of the implantation of permanent biomaterials,including stress shielding and undesired metal ion release in the body.This paper provides a literature review on the properties and manufacturing methods of Mgbased alloys for biomedical applications,including orthopedic implants,cardiovascular applications,surgical wires and staplers,and antitumor activities.Each application of Mg-based biomaterials is investigated from a biological perspective,including matching functional properties,biocompatibility,host tissue responses,and anti-microbial strategies,along with potential additive manufacturing technologies for these applications.Finally,an outlook is presented to provide recommendations for Mg-based biomaterials in the future.展开更多
This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensi...This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers.展开更多
Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling man...Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling manufacturers to improve operational efficiency,reduce costs,and enhance product quality.These platforms provide manufacturers with real-time visibility into their production processes and supply chains,allowing them to optimize operations and make informed decisions.In addition,IIoT service providers can help manufacturers create new revenue streams through the development of innovative products and services and enable them to leverage the benefits of emerging technologies such as Artificial Intelligence(AI)and machine learning.Overall,the implementation of IIoT platforms in the manufacturing industry is crucial for companies seeking to remain competitive and meet the ever-increasing demands of customers in the digital age.In this study,the evaluation criteria to be considered in the selection of IIoT service provider in small andmedium-sized(SME)manufacturing enterprises will be determined and IIoT service providers alternatives will be evaluated using the technique for order preference by similarity to an ideal solution(TOPSIS)method based on circular intuitionistic fuzzy sets.Based on the assessments conducted in accordance with the literature review and expert consultations,a set of 8 selection criteria has been established.These criteria encompass industry expertise,customer support,flexibility and scalability,security,cost-effectiveness,reliability,data analytics,as well as compatibility and usability.Upon evaluating these criteria,it was observed that the security criterion holds the highest significance,succeeded by cost-effectiveness,data analytics,flexibility and scalability,reliability,and customer support criteria,in descending order of importance.Following the evaluation of seven distinct alternatives against these criteria,it was deduced that the A6 alternative,a German service provider,emerged as the most favorable option.The identical issue was addressed utilizing sensitivity analysis alongside various multi-criteria decision-making(MCDM)methods,and after comprehensive evaluation,the outcomes were assessed.Spearman’s correlation coefficient was computed to ascertain the association between the rankings derived from solving the problem using diverse MCDM methods.展开更多
Over the course of millions of years,nature has evolved to ensure survival and presents us with a myriad of functional surfaces and structures that can boast high efficiency,multifunctionality,and sustainability.What ...Over the course of millions of years,nature has evolved to ensure survival and presents us with a myriad of functional surfaces and structures that can boast high efficiency,multifunctionality,and sustainability.What makes these surfaces particularly practical and effective is the intricate micropatterning that enables selective interactions with microstructures.Most of these structures have been realized in the laboratory environment using numerous fabrication techniques by tailoring specific surface properties.Of the available manufacturing methods,additive manufacturing(AM)has created opportunities for fabricating these structures as the complex architectures of the naturally occurring microstructures far exceed the traditional ways.This paper presents a concise overview of the fundamentals of such patterned microstructured surfaces,their fabrication techniques,and diverse applications.A comprehensive evaluation of micro fabrication methods is conducted,delving into their respective strengths and limitations.Greater emphasis is placed on AM processes like inkjet printing and micro digital light projection printing due to the intrinsic advantages of these processes to additively fabricate high resolution structures with high fidelity and precision.The paper explores the various advancements in these processes in relation to their use in microfabrication and also presents the recent trends in applications like the fabrication of microlens arrays,microneedles,and tissue scaffolds.展开更多
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite...Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.展开更多
Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomateria...Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.展开更多
Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and l...Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and low energy consumption characteristics.Analogous to the working mechanism of human brain,the SNN system transmits information through the spiking action of neurons.Therefore,artificial neurons are critical building blocks for constructing SNN in hardware.Memristors are drawing growing attention due to low consumption,high speed,and nonlinearity characteristics,which are recently introduced to mimic the functions of biological neurons.Researchers have proposed multifarious memristive materials including organic materials,inorganic materials,or even two-dimensional materials.Taking advantage of the unique electrical behavior of these materials,several neuron models are successfully implemented,such as Hodgkin–Huxley model,leaky integrate-and-fire model and integrate-and-fire model.In this review,the recent reports of artificial neurons based on memristive devices are discussed.In addition,we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices.Finally,the future challenges and outlooks of memristor-based artificial neurons are discussed,and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected.展开更多
基金supported by the 2022 MTC Young Individual Research Grants(Grant No.M22K3c0097)the Singapore Research,Innovation and Enterprise(RIE)2025 PlanSingapore Aerospace Programme Cycle 16(Grant No.M2215a0073)。
文摘Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.
基金the European Research Council starting grant “Cell Hybridge” for financial support under the Horizon2020 framework program (Grant#637308)the Province of Limburg for support and funding
文摘Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.
基金The authors acknowledge the financial support received from the National Natural Science Foundation of China(72061147002).
文摘China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4600300)the National Natural Science Foundation of China(No.U22A20189,52175364)the China Scholarship Council(Grant No.202206290134)。
文摘Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.
基金supported by VTT Technical Research Centre of Finland,Aalto University,Aerosint SA,and partially from European Union Horizon 2020 (No.768775)。
文摘Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.
基金supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers R01 AR067306 and R01 AR078241。
文摘Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.
文摘Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aerospace,automotive,and other transport industries.However,their widespread application is hindered by their low formability at room temperature due to limited slip systems.Cast Mg-alloys have low mechanical properties due to the presence of casting defects such as porosity and anisotropy in addition to the high scrap.While casting methods benefit from established process optimization techniques for these problems,additive manufacturing methods are increasingly replacing casting methods in Mg alloys as they provide more precise control over the microstructure and allow specific grain orientations,potentially enabling easier optimization of anisotropy properties in certain applications.Although metal additive manufacturing(MAM)technology also results in some manufacturing defects such as inhomogeneous microstructural evolution and porosity and additively manufactured Mg alloy parts exhibit lower properties than the wrought parts,they in general exhibit superior properties than the cast counterparts.Thus,MAM is a promising technique to produce Mg alloy parts.Directed energy deposition processes,particularly wire arc directed energy deposition(WA-DED),have emerged as an advantageous additive manufacturing(AM)technique for metallic materials including magnesium alloys,offering advantages such as high deposition rates,improved material efficiency,and reduced production costs compared to subtractive processes.However,the inherent challenges associated with magnesium,such as its high reactivity and susceptibility to oxidation,pose unique hurdles in the application of this technology.This review paper delves into the progress made in the application of DED technology to Mg-alloys,its challenges,and prospects.Furthermore,the predominant imperfections,notably inhomogeneous microstructure evolution and porosity,observed in Mg-alloy components manufactured through DED are discussed.Additionally,the preventive measures implemented to counteract the formation of these defects are explored.
基金Supported by Tianjin Municipal University Science and Technology Development Foundation of China(Grant No.2021KJ176).
文摘Machine tools,often referred to as the“mother machines”of the manufacturing industry,are crucial in developing smart manufacturing and are increasingly becoming more intelligent.Digital twin technology can promote machine tool intelligence and has attracted considerable research interest.However,there is a lack of clear and systematic analyses on how the digital twin technology enables machine tool intelligence.Herein,digital twin modeling was identified as an enabling technology for machine tool intelligence based on a comparative study of the characteristics of machine tool intelligence and digital twin.The review then delves into state-of-the-art digital twin modelingenabled machine tool intelligence,examining it from the aspects of data-based modeling and mechanism-data dual-driven modeling.Additionally,it highlights three bottleneck issues facing the field.Considering these problems,the architecture of a digital twin machine tool(DTMT)is proposed,and three key technologies are expounded in detail:Data perception and fusion technology,mechanism-data-knowledge hybrid-driven digital twin modeling and virtual-real synchronization technology,and dynamic optimization and collaborative control technology for multilevel parameters.Finally,future research directions for the DTMT are discussed.This work can provide a foundation basis for the research and implementation of digital-twin modeling-enabled machine tool intelligence,making it significant for developing intelligent machine tools.
基金Project(52071343)supported by the National Natural Science Foundation of China。
文摘In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures and mechanical properties of the Al-5Mg-2Si alloy manufactured with different inclination angles(0°,30°,45°,60°and 90°)were reported and discussed.It is found that the“semicircular”melt pool(MP)in the load bearing face of 0°sample was eventually transformed into“stripe-like”MP in the 90°sample,accompanied by an increased fraction of melt pool boundaries(MPBs).Moreover,the microstructural analysis revealed that the columnar-to-equiaxed transition(CET)of theα-Al grains and eutectic Mg2Si was completed in the 90°sample,which were significantly refined with the average size of 10.6μm and 0.44μm,respectively.It is also found that the 90°sample exhibited good combination of strength and elongation(i.e.yield strength of 393 MPa,ultimate tensile strength of 483 MPa and elongation of 8.1%).The anisotropic mechanical properties were highly associated with the refined microstructures,thermal stress,and density of MPBs.Additionally,the CET driven by inclination angles was attributed to the variation of thermal conditions inside the local MPs.
基金the sponsorship of the following fund projects:the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515110578)the Guangzhou Basic and Applied Basic Research Project,China(No.2024A04J00725)the Guangdong Academy of Sciences Project of Science and Technology Development,China(Nos.2022GDASZH-2022010107 and 2022GDASZH-2022010108).Dr.Zhao would particularly like to thank his wife,M.S.Guo,for her help with the language of the manuscript and for the encouragement of their newborn baby.
文摘The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturing(DLAM)stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step.Over the last decade,sig-nificant and encouraging progress has been accomplished in DLAM of high-performance ceramics,including Al_(2)O_(3),ZrO_(2),Al_(2)O_(3)/ZrO_(2),SiC,and others.However,high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties,hindering their practical application in high-end equipment.Further improvements are necessary be-fore they can be widely adopted.Methods such as field-assisted techniques and post-processing can be employed to address these chal-lenges,but a more systematic review is needed.This work aims to critically review the advancements in direct selective laser sintering/melting(SLS/SLM)and laser directed energy deposition(LDED)for various ceramic material systems.Additionally,it provides an overview of the current challenges,future research opportunities,and potential applications associated with DLAM of high-perform-ance ceramics.
文摘Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the medical industries owing to their biodegradability and a lower elastic modulus comparable to bone.The ability to manufacture near-net shape products featuring intricate geometries has sparked huge interest in additive manufacturing(AM)of Mg alloys,reflecting a transformation in the manufacturing sectors.However,AM of Mg alloys presents more formidable challenges due to inherent properties,particularly susceptibility to oxidation,gas trapping,high thermal expansion coefficient,and low solidification temperature.This leads to defects such as porosity,lack of fusion,cracking,delamination,residual stresses,and inhomogeneity,ultimately influencing the mechanical,corrosion,and surface properties of AM Mg alloys.To address these issues,post-processing of AM Mg alloys are often needed to make them suitable for application.The present article reviews all post-processing techniques adapted for AM Mg alloys to date,including heat treatment,hot isostatic pressing,friction stir processing,and surface peening.The utilization of these methods within the hybrid AM process,employing interlayer post-processing,is also discussed.Optimal post-processing conditions are reported,and their influence on the microstructure,mechanical,and corrosion properties are detailed.Additionally,future prospects and research directions are proposed.
文摘Mask image projection-based vat photopolymerization(MIP-VPP)offers advantages like low cost,high resolution,and a wide material range,making it popular in industry and education.Recently,MIP-VPP employing liquid crystal displays(LCDs)has gained traction,increasingly replacing digital micromirror devices,particularly among hobbyists and in educational settings,and is now beginning to be used in industrial environments.However,LCD-based MIP-VPPsuffers from pronounced pixelated aliasing arising from LCD’s discrete image pixels and itsdirect-contact configuration in MIP-VPP machines,leading to rough surfaces on the 3D-printed parts.Here,we propose a vibration-assisted MIP-VPP method that utilizes a microscalevibration to uniformize the light intensity distribution of the LCD-based mask image on VPP’s building platform.By maintaining the same fabrication speed,our technique generates asmoother,non-pixelated mask image,reducing the roughness on flat surfaces and boundary segments of 3D-printed parts.Through light intensity modeling and simulation,we derived an optimal vibration pattern for LCD mask images,subsequently validated by experiments.We assessed the surface texture,boundary integrity,and dimensional accuracy of componentsproduced using the vibration-assisted approach.The notably smoother surfaces and improved boundary roughness enhance the printing quality of MIP-VPP,enabling its promisingapplications in sectors like the production of 3D-printed optical devices and others.
基金Supported by National Natural Science Foundation of China (Grant Nos.52235011,51905352)Shenzhen Municipal Excellent Science and Technology Creative Talent Training Program (Grant No.RCBS20210609103819021)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No.2023B1515120086)Shenzhen Municipal Science and Technology Planning Project (Grant No.CJGJZD20230724093600001)。
文摘Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.
基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean Government(MSIT)[grant numbers RS-2023-00207763 and NRF-2022R1A2C2010350].
文摘Magnesium(Mg)and its alloys have recently gained increasing attention in the biomedical field as promising biodegradable materials with harmless degradation products.Magnesium-based alloys have a wide range of biomedical applications because of their outstanding biocompatibility and unique mechanical properties.Widespread use of Mg-based biomedical devices eliminates the need for post-healing biomaterial removal surgery and minimizes the negative consequences of the implantation of permanent biomaterials,including stress shielding and undesired metal ion release in the body.This paper provides a literature review on the properties and manufacturing methods of Mgbased alloys for biomedical applications,including orthopedic implants,cardiovascular applications,surgical wires and staplers,and antitumor activities.Each application of Mg-based biomaterials is investigated from a biological perspective,including matching functional properties,biocompatibility,host tissue responses,and anti-microbial strategies,along with potential additive manufacturing technologies for these applications.Finally,an outlook is presented to provide recommendations for Mg-based biomaterials in the future.
文摘This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers.
文摘Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling manufacturers to improve operational efficiency,reduce costs,and enhance product quality.These platforms provide manufacturers with real-time visibility into their production processes and supply chains,allowing them to optimize operations and make informed decisions.In addition,IIoT service providers can help manufacturers create new revenue streams through the development of innovative products and services and enable them to leverage the benefits of emerging technologies such as Artificial Intelligence(AI)and machine learning.Overall,the implementation of IIoT platforms in the manufacturing industry is crucial for companies seeking to remain competitive and meet the ever-increasing demands of customers in the digital age.In this study,the evaluation criteria to be considered in the selection of IIoT service provider in small andmedium-sized(SME)manufacturing enterprises will be determined and IIoT service providers alternatives will be evaluated using the technique for order preference by similarity to an ideal solution(TOPSIS)method based on circular intuitionistic fuzzy sets.Based on the assessments conducted in accordance with the literature review and expert consultations,a set of 8 selection criteria has been established.These criteria encompass industry expertise,customer support,flexibility and scalability,security,cost-effectiveness,reliability,data analytics,as well as compatibility and usability.Upon evaluating these criteria,it was observed that the security criterion holds the highest significance,succeeded by cost-effectiveness,data analytics,flexibility and scalability,reliability,and customer support criteria,in descending order of importance.Following the evaluation of seven distinct alternatives against these criteria,it was deduced that the A6 alternative,a German service provider,emerged as the most favorable option.The identical issue was addressed utilizing sensitivity analysis alongside various multi-criteria decision-making(MCDM)methods,and after comprehensive evaluation,the outcomes were assessed.Spearman’s correlation coefficient was computed to ascertain the association between the rankings derived from solving the problem using diverse MCDM methods.
基金The National Science Foundation(NSF)through Grants ECCS-2111056 and CMMI-1846863.
文摘Over the course of millions of years,nature has evolved to ensure survival and presents us with a myriad of functional surfaces and structures that can boast high efficiency,multifunctionality,and sustainability.What makes these surfaces particularly practical and effective is the intricate micropatterning that enables selective interactions with microstructures.Most of these structures have been realized in the laboratory environment using numerous fabrication techniques by tailoring specific surface properties.Of the available manufacturing methods,additive manufacturing(AM)has created opportunities for fabricating these structures as the complex architectures of the naturally occurring microstructures far exceed the traditional ways.This paper presents a concise overview of the fundamentals of such patterned microstructured surfaces,their fabrication techniques,and diverse applications.A comprehensive evaluation of micro fabrication methods is conducted,delving into their respective strengths and limitations.Greater emphasis is placed on AM processes like inkjet printing and micro digital light projection printing due to the intrinsic advantages of these processes to additively fabricate high resolution structures with high fidelity and precision.The paper explores the various advancements in these processes in relation to their use in microfabrication and also presents the recent trends in applications like the fabrication of microlens arrays,microneedles,and tissue scaffolds.
基金financially supported by the Young Individual Research Grants(Grant No:M22K3c0097)Singapore RIE 2025 plan and Singapore Aerospace Programme Cycle 16(Grant No:M2215a0073)led by C Tan+2 种基金supported by the Singapore A*STAR Career Development Funds(Grant No:C210812047)the National Natural Science Foundation of China(52174361 and 52374385)the support by US NSF DMR-2104933。
文摘Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.
基金The authors wish to acknowledge Engineering and Physical Sciences Research Council(EPSRC)UK for the Global Challenges Research Fund(No.EP/R015139/1)Rosetrees Trust UK&Stoneygate Trust UK for the Enterprise Fellowship(Ref:M874).
文摘Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.
基金supported financially by the fund from the Ministry of Science and Technology of China(Grant No.2019YFB2205100)the National Science Fund for Distinguished Young Scholars(No.52025022)+3 种基金the National Nature Science Foundation of China(Grant Nos.U19A2091,62004016,51732003,52072065,1197407252272140 and 52372137)the‘111’Project(Grant No.B13013)the Fundamental Research Funds for the Central Universities(Nos.2412023YQ004 and 2412022QD036)the funding from Jilin Province(Grant Nos.20210201062GX,20220502002GH,20230402072GH,20230101017JC and 20210509045RQ)。
文摘Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and low energy consumption characteristics.Analogous to the working mechanism of human brain,the SNN system transmits information through the spiking action of neurons.Therefore,artificial neurons are critical building blocks for constructing SNN in hardware.Memristors are drawing growing attention due to low consumption,high speed,and nonlinearity characteristics,which are recently introduced to mimic the functions of biological neurons.Researchers have proposed multifarious memristive materials including organic materials,inorganic materials,or even two-dimensional materials.Taking advantage of the unique electrical behavior of these materials,several neuron models are successfully implemented,such as Hodgkin–Huxley model,leaky integrate-and-fire model and integrate-and-fire model.In this review,the recent reports of artificial neurons based on memristive devices are discussed.In addition,we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices.Finally,the future challenges and outlooks of memristor-based artificial neurons are discussed,and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected.