Time?varying mesh stiffness(TVMS) and gear errors include short?term and long?term components are the two main internal dynamic excitations for gear transmission. The coupling relationship between the two factors is u...Time?varying mesh stiffness(TVMS) and gear errors include short?term and long?term components are the two main internal dynamic excitations for gear transmission. The coupling relationship between the two factors is usually neglected in the traditional quasi-static and dynamic behaviors analysis of gear system. This paper investigates the influence of short?term and long?term components of manufacturing errors on quasi?static and dynamic behaviors of helical gear system considering the coupling relationship between TVMS and gear errors. The TVMS, loaded static transmission error(LSTE) and loaded composite mesh error(LCMS) are determined using an improved loaded tooth contact analysis(LTCA) model. Considering the structure of shaft, as well as the direction of power flow and bearing location, a precise generalized finite element dynamic model of helical gear system is developed, and the dynamic responses of the system are obtained by numerical integration method. The results suggest that lighter loading conditions result in smaller mesh stiffness and stronger vibration, and the corresponding resonance speeds of the system become lower. Long?term components of manufacturing errors lead to the appearance of sideband frequency components in frequency spectrum of dynamic responses. The sideband frequency components are predominant under light loading conditions. With the increase of output torque, the mesh frequency and its harmonics components tend to be enhanced relative to sideband frequency components. This study can provide effective reference for low noise design of gear transmission.展开更多
Externally pressurized spherical air bearings are the key component of the three-axis air bearing table, and the manufacturing errors of the bearing affects the performance of the air bearing table. However, the manuf...Externally pressurized spherical air bearings are the key component of the three-axis air bearing table, and the manufacturing errors of the bearing affects the performance of the air bearing table. However, the manufacturing errors are unavoidable, and the pursuit to enhance the manufacturing accuracy will increase the cost greatly. In order to provide some theoretical guideline for the tolerance choice in the design of the externally pressurized spherical air bearings with inherent compensation, the effects of several manufacturing errors on the static characteristics of the air bearing are studied. Due to the complex geometry of the computational domain, an unstructured meshing technology is used for mesh generation. A finite-volume method is adopted to discretize the three-dimensional steady-state compressible Navier-Stokes equations. A modified SIMPLE algorithm which is suitable for compressible flows is applied to solve the discretized governing equations. The effects of the dimension error and the roundness error of the ball head and the ball socket on the static characteristics are investigated. The investigation result shows that the positive dimension error and the oblate spheroid-type roundness error of the ball head as well as the negative dimension error and the prolate spheroid-type roundness error of the ball socket can improve the bearing capacity and static stiffness of the air bearings by reducing the mass flow. The calculation method proposed in this paper fits well for the general principle, which can be extended to the characteristics analysis of other air bearings.展开更多
Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to t...Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to the existence of multiple variation streams, it is challenging to model and analyze variation propagation in a multi-station system. Current approaches to error modeling for multistation machining process are not explicit enough for error control and ensuring final product quality. In this paper, a mathematic model to depict the part dimensional variation of the complex multistation manufacturing process is formulated. A linear state space dimensional error propagation equation is established through kinematics analysis of the influence of locating parameter variations and locating datum variations on dimensional errors, so the dimensional error accumulation and transformation within the multistation process are quantitatively described. A systematic procedure to build the model is presented, which enhances the way to determine the variation sources in complex machining systems. A simple two-dimensional example is used to illustrate the proposed procedures. Finally, an industrial case of multistation machining part in a manufacturing shop is given to testify the validation and practicability of the method. The proposed analytical model is essential to quality control and improvement for multistation systems in machining quality forecasting and design optimization.展开更多
The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive th...The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive the equation of face gear error tooth surface by assuming the tool surface as the error surface, where actual tool installation position error is introduced into the equation of virtual shaper cutter. Surface equations and 3-D models for the face gear and the worm wheel involving four kinds of tool installation errors are established. When compared, the face gear tooth surface machined in VERICUT software for simulation based on this new method and the one obtained based on real process(grinding face gear by using a theoretical worm wheel with actual position errors) are found to be coincident, which proves the validity and feasibility of this new method. By using mesh planning for the rotating projection plane of the face gear work tooth surface, the deviation values of the tooth surface and the difference surface are acquired, and the influence of four kinds of errors on the face gear tooth surface is analyzed. Accordingly, this work provides a theoretical reference for assembly craft of worm wheel, improvement of face gear machining accuracy and modification of error tooth surface.展开更多
A technology of two-coordinate dual-servo(TCDS) is proposed. Using this technology which is based on error compensation, workpieces of higher contour accuracy could he turned on ultra-precision machine tool with Poor ...A technology of two-coordinate dual-servo(TCDS) is proposed. Using this technology which is based on error compensation, workpieces of higher contour accuracy could he turned on ultra-precision machine tool with Poor dynamic performances. The principle, constitute and operation of a TCDS system are described. Mathematical proof and experiments are achieved in addition.展开更多
Taking the accelerometer installation errors into consideration, the attitude optimization algorithm of Gyro Free Inertial Meastement Unit (GFIMU) is studied in the high spinning condition in this paper. A ten-accel...Taking the accelerometer installation errors into consideration, the attitude optimization algorithm of Gyro Free Inertial Meastement Unit (GFIMU) is studied in the high spinning condition in this paper. A ten-accelerometer configuration is designed so as to establish a mathematical model to acquire the angular speeds in the case of installation errors. Precision of the algorithm is evaluated by using damping GaussNewton method. A large amotmt of sinmlation results show that ff the accelertlmter's angleinstallation errors main-tain small (〈5°), the errors of attitude angles can be limited within ±1°. Hence, the algorithm has a great applicable value in engineering.展开更多
In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling)-based 3D printer, undesirable shape errors occur in the product due to heat shrinkag...In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling)-based 3D printer, undesirable shape errors occur in the product due to heat shrinkage. This paper experimentally ob-served the influence of the bed temperature change on the deformed shape errors of a hexahedral specimen of 100 × 50 × 50 mm3 produced by using a 3D printer. During printing work, the head nozzle temperature was kept at 240?C and the head speed was set at 50 mm/s. The chamber was enclosed with a PC-plate. 3D printing was conducted at four different bed temperatures;50?C, 70?C, 90?C, and 110?C. After the produced specimens naturally cooled down to room temperature, their deformed shape errors were measured. As a result, the higher the bed temperature, the lower the deformed shape errors of the specimens were. However, if the bed temperature had exceeded 120?C, laminating adhesion became poor. That seems to occur because of the material phase change and can make 3D printing work very hard as a consequence. Results of this study can be helpful to set optimum bed temperature condition in FDM additive manufacturing.展开更多
Additive manufacturing(AM),adding materials layer by layer,can be used to produce objects of almost any shape or geometry.However,AM techniques cannot accurately build parts with large overhangs,especially for the lar...Additive manufacturing(AM),adding materials layer by layer,can be used to produce objects of almost any shape or geometry.However,AM techniques cannot accurately build parts with large overhangs,especially for the large features close to horizontal,hanging over the void.The overhangs will make the manufactured model deviate from the design model,which will result in the performance of the manufactured model that cannot satisfy the design requirements.In this paper,we will propose a new finite element(FE)analysis model that includes the manufacturing errors by mimicking the AM layer by layer construction process.In such FE model,an overhang coefficient is introduced to each FE,which is defined by the support elements in the lower layer.By mimicking the AM process from the bottom layer to the top layer,all the FE properties are updated based on their overhang coefficients,which makes the computational model be able to predict the manufactured model with manufacturing errors.The proposed model can be used to predict the performance of the AM objects in the design stage,which will help the designers to improve their design by the simulation results.展开更多
Installation error angle is one of the factors that affect the accuracy of electronic compass used for geomagnetic navigation.To solve this problem,the calibration and compensation methods for installation error angle...Installation error angle is one of the factors that affect the accuracy of electronic compass used for geomagnetic navigation.To solve this problem,the calibration and compensation methods for installation error angle are studied.By analyzing the generation mechanism of installation error angle of electronic compass,an installation error model is established,compensation formulae are derived,and calibration scheme is proposed.To verify the correctness of the calibration and compensation methods,the verification experiment is conducted by computer simulation.The simulation results show that the proposed calibration and compensation methods are effective and practical.展开更多
In this paper,the influence of forced installation caused by a hole-location error on the 3D stress distribution and damage of a composite bolted joint is investigated.An analytical model of stress distributed on comp...In this paper,the influence of forced installation caused by a hole-location error on the 3D stress distribution and damage of a composite bolted joint is investigated.An analytical model of stress distributed on composite holes is promoted,in view of non-uniform extrusion caused by forced installation.At first,non-uniform extrusion of the hole edge caused by forced installation is analyzed.According to the contact state,expression of hole deformation is given.Then,based on Hertz theory,the maximum extrusion load is obtained with help of deformation expression.By constructing an elastic foundation beam model,3D stress distributed on a hole could be analyzed according to the extrusion load.Then,stress distribution predicted by the above analytical method is compared with that provided by FE considering composite damage.Finally,a forced installation experiment is carried out to analyze the damage distribution of the joint.Results show that a central-symmetrically distributed stress is introduced by the hole-location error.With an increment of the error,strength of composite decreases due to extrusion damage.Therefore,stress presents a concave distribution on the hole.As the hole-location error exceeding 3%,stress decreases gradually due to failure of composite.Damage of holes does not exhibit a centrosymmetric distribution.Serious damage is mainly distributed on the entrance of the hole at the lower sheet.展开更多
The paper submits a method to calculate thermal deformation and manufacture error in surface grinding. The author established a simplified temperature field model, and derived the thermal deformation of the ground wor...The paper submits a method to calculate thermal deformation and manufacture error in surface grinding. The author established a simplified temperature field model, and derived the thermal deformation of the ground workpiece. It is found that there exists not only a upwarp thermal deformation, but also a parallel expansion thermal deformation. A upwarp thermal deformation causes a concave shape error on the profile of the workpiece, and a parallel expansion thermal deformation causes a dimension error in height. The calculations of examples are given and compared with presented experiment data.展开更多
The paper considers the modification or the manufacture error of cycloidal gear, then analyzes the relationship of pin circle meshed with the modified cycloidal gear, discuases the amount of error that leads to destro...The paper considers the modification or the manufacture error of cycloidal gear, then analyzes the relationship of pin circle meshed with the modified cycloidal gear, discuases the amount of error that leads to destroying conjugate action and results in the changes of tbe instantaneous velocity ratio and so as to affect the smooth operation of cycloidal pin gearing. The idea of the relationship between amount of modification aud manufacture error and the smooth operation can be gotten from the curve diagrams of the instantaneous velocity ratio. Therefore, the directions for improving the reature of the cycloidal pin gear transmission are clear.展开更多
Control charts(CCs)are one of the main tools in Statistical Process Control that have been widely adopted in manufacturing sectors as an effective strategy for malfunction detection throughout the previous decades.Mea...Control charts(CCs)are one of the main tools in Statistical Process Control that have been widely adopted in manufacturing sectors as an effective strategy for malfunction detection throughout the previous decades.Measurement errors(M.E’s)are involved in the quality characteristic of interest,which can effect the CC’s performance.The authors explored the impact of a linearmodel with additive covariate M.E on the multivariate cumulative sum(CUSUM)CC for a specific kind of data known as compositional data(CoDa).The average run length(ARL)is used to assess the performance of the proposed chart.The results indicate that M.E’s significantly affects themultivariate CUSUM-CoDaCCs.The authors haveused theMarkov chainmethod to study the impact of different involved parameters using six different cases for the variance-covariance matrix(VCM)(i.e.,uncorrelated with equal variances,uncorrelated with unequal variances,positively correlated with equal variances,positively correlated with unequal variances,negatively correlatedwith equal variances and negatively correlated with unequal variances).The authors concluded that the error VCM has a negative impact on the performance of themultivariate CUSUM-CoDa CC,as the ARL increases with an increase in the value of the error VCM.The subgroup size m and powering operator b positively impact the proposed CC,as the ARL decreases with an increase in m or b.The number of variables p also has a negative impact on the performance of the proposed CC,as the values of ARL increase with an increase in p.For the implementation of the proposal,two illustrated examples have been reported formultivariate CUSUM-CoDaCCs inthe presence ofM.E’s.Onedealswith themanufacturingprocessof uncoated aspirin tablets,and the other is based on monitoring the machines involved in the muesli manufacturing process.展开更多
基金Supported by Key Project of National Natural Science Foundation of China(Grant No.51535009)111 Project(Grant No.B13044)
文摘Time?varying mesh stiffness(TVMS) and gear errors include short?term and long?term components are the two main internal dynamic excitations for gear transmission. The coupling relationship between the two factors is usually neglected in the traditional quasi-static and dynamic behaviors analysis of gear system. This paper investigates the influence of short?term and long?term components of manufacturing errors on quasi?static and dynamic behaviors of helical gear system considering the coupling relationship between TVMS and gear errors. The TVMS, loaded static transmission error(LSTE) and loaded composite mesh error(LCMS) are determined using an improved loaded tooth contact analysis(LTCA) model. Considering the structure of shaft, as well as the direction of power flow and bearing location, a precise generalized finite element dynamic model of helical gear system is developed, and the dynamic responses of the system are obtained by numerical integration method. The results suggest that lighter loading conditions result in smaller mesh stiffness and stronger vibration, and the corresponding resonance speeds of the system become lower. Long?term components of manufacturing errors lead to the appearance of sideband frequency components in frequency spectrum of dynamic responses. The sideband frequency components are predominant under light loading conditions. With the increase of output torque, the mesh frequency and its harmonics components tend to be enhanced relative to sideband frequency components. This study can provide effective reference for low noise design of gear transmission.
基金supported by National Natural Science Foundation ofChina (Grant No. 50335010)
文摘Externally pressurized spherical air bearings are the key component of the three-axis air bearing table, and the manufacturing errors of the bearing affects the performance of the air bearing table. However, the manufacturing errors are unavoidable, and the pursuit to enhance the manufacturing accuracy will increase the cost greatly. In order to provide some theoretical guideline for the tolerance choice in the design of the externally pressurized spherical air bearings with inherent compensation, the effects of several manufacturing errors on the static characteristics of the air bearing are studied. Due to the complex geometry of the computational domain, an unstructured meshing technology is used for mesh generation. A finite-volume method is adopted to discretize the three-dimensional steady-state compressible Navier-Stokes equations. A modified SIMPLE algorithm which is suitable for compressible flows is applied to solve the discretized governing equations. The effects of the dimension error and the roundness error of the ball head and the ball socket on the static characteristics are investigated. The investigation result shows that the positive dimension error and the oblate spheroid-type roundness error of the ball head as well as the negative dimension error and the prolate spheroid-type roundness error of the ball socket can improve the bearing capacity and static stiffness of the air bearings by reducing the mass flow. The calculation method proposed in this paper fits well for the general principle, which can be extended to the characteristics analysis of other air bearings.
基金supported by National Department Fundamental Research Foundation of China (Grant No. B222090014)National Department Technology Fundatmental Foundaiton of China (Grant No. C172009C001)
文摘Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to the existence of multiple variation streams, it is challenging to model and analyze variation propagation in a multi-station system. Current approaches to error modeling for multistation machining process are not explicit enough for error control and ensuring final product quality. In this paper, a mathematic model to depict the part dimensional variation of the complex multistation manufacturing process is formulated. A linear state space dimensional error propagation equation is established through kinematics analysis of the influence of locating parameter variations and locating datum variations on dimensional errors, so the dimensional error accumulation and transformation within the multistation process are quantitatively described. A systematic procedure to build the model is presented, which enhances the way to determine the variation sources in complex machining systems. A simple two-dimensional example is used to illustrate the proposed procedures. Finally, an industrial case of multistation machining part in a manufacturing shop is given to testify the validation and practicability of the method. The proposed analytical model is essential to quality control and improvement for multistation systems in machining quality forecasting and design optimization.
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Project of Hunan Province,China
文摘The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive the equation of face gear error tooth surface by assuming the tool surface as the error surface, where actual tool installation position error is introduced into the equation of virtual shaper cutter. Surface equations and 3-D models for the face gear and the worm wheel involving four kinds of tool installation errors are established. When compared, the face gear tooth surface machined in VERICUT software for simulation based on this new method and the one obtained based on real process(grinding face gear by using a theoretical worm wheel with actual position errors) are found to be coincident, which proves the validity and feasibility of this new method. By using mesh planning for the rotating projection plane of the face gear work tooth surface, the deviation values of the tooth surface and the difference surface are acquired, and the influence of four kinds of errors on the face gear tooth surface is analyzed. Accordingly, this work provides a theoretical reference for assembly craft of worm wheel, improvement of face gear machining accuracy and modification of error tooth surface.
文摘A technology of two-coordinate dual-servo(TCDS) is proposed. Using this technology which is based on error compensation, workpieces of higher contour accuracy could he turned on ultra-precision machine tool with Poor dynamic performances. The principle, constitute and operation of a TCDS system are described. Mathematical proof and experiments are achieved in addition.
基金supported by National Key Laboratory for Electronic Measurement and Technology(No.9140C120401080C12)
文摘Taking the accelerometer installation errors into consideration, the attitude optimization algorithm of Gyro Free Inertial Meastement Unit (GFIMU) is studied in the high spinning condition in this paper. A ten-accelerometer configuration is designed so as to establish a mathematical model to acquire the angular speeds in the case of installation errors. Precision of the algorithm is evaluated by using damping GaussNewton method. A large amotmt of sinmlation results show that ff the accelertlmter's angleinstallation errors main-tain small (〈5°), the errors of attitude angles can be limited within ±1°. Hence, the algorithm has a great applicable value in engineering.
文摘In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling)-based 3D printer, undesirable shape errors occur in the product due to heat shrinkage. This paper experimentally ob-served the influence of the bed temperature change on the deformed shape errors of a hexahedral specimen of 100 × 50 × 50 mm3 produced by using a 3D printer. During printing work, the head nozzle temperature was kept at 240?C and the head speed was set at 50 mm/s. The chamber was enclosed with a PC-plate. 3D printing was conducted at four different bed temperatures;50?C, 70?C, 90?C, and 110?C. After the produced specimens naturally cooled down to room temperature, their deformed shape errors were measured. As a result, the higher the bed temperature, the lower the deformed shape errors of the specimens were. However, if the bed temperature had exceeded 120?C, laminating adhesion became poor. That seems to occur because of the material phase change and can make 3D printing work very hard as a consequence. Results of this study can be helpful to set optimum bed temperature condition in FDM additive manufacturing.
基金This work has been supported by National Natural Science Foundation of China(51705158)Guangdong Basic and Applied Basic Research Foundation(2019A1515011783)the Fundamental Research Funds for the Central Universities(2018MS45).
文摘Additive manufacturing(AM),adding materials layer by layer,can be used to produce objects of almost any shape or geometry.However,AM techniques cannot accurately build parts with large overhangs,especially for the large features close to horizontal,hanging over the void.The overhangs will make the manufactured model deviate from the design model,which will result in the performance of the manufactured model that cannot satisfy the design requirements.In this paper,we will propose a new finite element(FE)analysis model that includes the manufacturing errors by mimicking the AM layer by layer construction process.In such FE model,an overhang coefficient is introduced to each FE,which is defined by the support elements in the lower layer.By mimicking the AM process from the bottom layer to the top layer,all the FE properties are updated based on their overhang coefficients,which makes the computational model be able to predict the manufactured model with manufacturing errors.The proposed model can be used to predict the performance of the AM objects in the design stage,which will help the designers to improve their design by the simulation results.
基金Natural Science Foundation of Shanxi Province(No.2010011022-4)
文摘Installation error angle is one of the factors that affect the accuracy of electronic compass used for geomagnetic navigation.To solve this problem,the calibration and compensation methods for installation error angle are studied.By analyzing the generation mechanism of installation error angle of electronic compass,an installation error model is established,compensation formulae are derived,and calibration scheme is proposed.To verify the correctness of the calibration and compensation methods,the verification experiment is conducted by computer simulation.The simulation results show that the proposed calibration and compensation methods are effective and practical.
基金co-supported by the National Natural Science Foundation of China(No.51975472)the Fundamental Scientific Research,China(No.JCKY2021205B110).
文摘In this paper,the influence of forced installation caused by a hole-location error on the 3D stress distribution and damage of a composite bolted joint is investigated.An analytical model of stress distributed on composite holes is promoted,in view of non-uniform extrusion caused by forced installation.At first,non-uniform extrusion of the hole edge caused by forced installation is analyzed.According to the contact state,expression of hole deformation is given.Then,based on Hertz theory,the maximum extrusion load is obtained with help of deformation expression.By constructing an elastic foundation beam model,3D stress distributed on a hole could be analyzed according to the extrusion load.Then,stress distribution predicted by the above analytical method is compared with that provided by FE considering composite damage.Finally,a forced installation experiment is carried out to analyze the damage distribution of the joint.Results show that a central-symmetrically distributed stress is introduced by the hole-location error.With an increment of the error,strength of composite decreases due to extrusion damage.Therefore,stress presents a concave distribution on the hole.As the hole-location error exceeding 3%,stress decreases gradually due to failure of composite.Damage of holes does not exhibit a centrosymmetric distribution.Serious damage is mainly distributed on the entrance of the hole at the lower sheet.
文摘The paper submits a method to calculate thermal deformation and manufacture error in surface grinding. The author established a simplified temperature field model, and derived the thermal deformation of the ground workpiece. It is found that there exists not only a upwarp thermal deformation, but also a parallel expansion thermal deformation. A upwarp thermal deformation causes a concave shape error on the profile of the workpiece, and a parallel expansion thermal deformation causes a dimension error in height. The calculations of examples are given and compared with presented experiment data.
文摘The paper considers the modification or the manufacture error of cycloidal gear, then analyzes the relationship of pin circle meshed with the modified cycloidal gear, discuases the amount of error that leads to destroying conjugate action and results in the changes of tbe instantaneous velocity ratio and so as to affect the smooth operation of cycloidal pin gearing. The idea of the relationship between amount of modification aud manufacture error and the smooth operation can be gotten from the curve diagrams of the instantaneous velocity ratio. Therefore, the directions for improving the reature of the cycloidal pin gear transmission are clear.
基金supported by the National Natural Science Foundation of China (Grant No.71802110)the Humanity and Social Science Foundation of theMinistry of Education of China (Grant No.19YJA630061).
文摘Control charts(CCs)are one of the main tools in Statistical Process Control that have been widely adopted in manufacturing sectors as an effective strategy for malfunction detection throughout the previous decades.Measurement errors(M.E’s)are involved in the quality characteristic of interest,which can effect the CC’s performance.The authors explored the impact of a linearmodel with additive covariate M.E on the multivariate cumulative sum(CUSUM)CC for a specific kind of data known as compositional data(CoDa).The average run length(ARL)is used to assess the performance of the proposed chart.The results indicate that M.E’s significantly affects themultivariate CUSUM-CoDaCCs.The authors haveused theMarkov chainmethod to study the impact of different involved parameters using six different cases for the variance-covariance matrix(VCM)(i.e.,uncorrelated with equal variances,uncorrelated with unequal variances,positively correlated with equal variances,positively correlated with unequal variances,negatively correlatedwith equal variances and negatively correlated with unequal variances).The authors concluded that the error VCM has a negative impact on the performance of themultivariate CUSUM-CoDa CC,as the ARL increases with an increase in the value of the error VCM.The subgroup size m and powering operator b positively impact the proposed CC,as the ARL decreases with an increase in m or b.The number of variables p also has a negative impact on the performance of the proposed CC,as the values of ARL increase with an increase in p.For the implementation of the proposal,two illustrated examples have been reported formultivariate CUSUM-CoDaCCs inthe presence ofM.E’s.Onedealswith themanufacturingprocessof uncoated aspirin tablets,and the other is based on monitoring the machines involved in the muesli manufacturing process.