Increased food demand from the rapidly growing human population has caused intensive land transition from desert to farmland in arid regions of northwest China. In this developing ecosystem, the optimized fertilizatio...Increased food demand from the rapidly growing human population has caused intensive land transition from desert to farmland in arid regions of northwest China. In this developing ecosystem, the optimized fertilization strategies are becoming an urgent need for sustainable crop productivity, efficient resources use, together with the delivery of ecosystems services including soil carbon(C) and nitrogen(N) accumulation. Through a 7-year field experiment with 9 fertilization treatments in a newly cultivated farmland, we tested whether different fertilizations had significant influences on soil C and N accumulation in this developing ecosystem, and also investigated possible mechanisms for this influence. The results showed that applying organic manure in cultivated farmland significantly increased the soil C and N accumulation rates; this influence was greater when it was combined with chemical fertilizer, accumulating 2.01 t C and 0.11 t N ha^(–1) yr^(–1) in the most successful fertilization treatment. These high rates of C and N accumulation were found associated with increased input of C and N, although the relationship between the N accumulation rate and N input was not significant. The improved soil physical properties was observed under only organic manure and integrated fertilization treatments, and the significant relationship between soil C or N and soil physical properties were also found in this study. The results suggest that in newly cultivated farmland, long term organic manure and integrated fertilization can yield significant benefits for soil C and N accumulation, and deliver additional influence on physical properties.展开更多
The long-term productivity of a soil is greatly influenced by cation exchange capacity(CEC).Moreover,interactions between dominant base cations and other nutrients are important for the health and stability of grass...The long-term productivity of a soil is greatly influenced by cation exchange capacity(CEC).Moreover,interactions between dominant base cations and other nutrients are important for the health and stability of grassland ecosystems.Soil exchangeable base cations and cation ratios were examined in a 11-year experiment with sheep manure application rates 0–1,500 g/(m2?a) in a semi-arid steppe in Inner Mongolia of China,aiming to clarify the relationships of base cations with soil p H,buffer capacity and fertility.Results showed that CEC and contents of exchangeable calcium(Ca2+),magnesium(Mg2+),potassium(K+) and sodium(Na+) were significantly increased,and Ca2+ saturation tended to decrease,while K+ saturation tended to increase with the increases of sheep manure application rates.The Ca2+/Mg2+ and Ca2+/K+ ratios decreased,while Mg2+,K+ and Na+ saturations increased with increasing manure application rates.Both base cations and CEC were significantly and positively correlated with soil organic carbon(SOC) and soil p H.The increases of SOC and soil p H would be the dominant factors that contribute to the increase of cations in soil.On a comparison with the initial soil p H before the experiment,we deduced that sheep manure application could partly buffer soil p H decrease potentially induced by atmospheric deposition of nitrogen and sulfur.Our results indicate that sheep manure application is beneficial to the maintenance of base cations and the buffering of soil acidification,and therefore can improve soil fertility in the semi-arid steppes of northeastern China.展开更多
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to p...We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).展开更多
Global food production is expected to double by 2050 for feeding 9 billion people(Godfray et al.2010),but yields had stagnated or even collapsed in 24–39%of crop-growing areas over the period 1961–2008(Ray et al....Global food production is expected to double by 2050 for feeding 9 billion people(Godfray et al.2010),but yields had stagnated or even collapsed in 24–39%of crop-growing areas over the period 1961–2008(Ray et al.2012),展开更多
Utilizing straw as feed and applying cattle and sheep manure fertilizer to the field plays an important role in solving the shortage of feed raw material resources,alleviating the conflict between human beings and liv...Utilizing straw as feed and applying cattle and sheep manure fertilizer to the field plays an important role in solving the shortage of feed raw material resources,alleviating the conflict between human beings and livestock,and realizing the full utilization of straw as a resource and green and low-carbon circular development.We carried out an investigation on the feed utilization of crop straw in Sichuan Province,comprehensively grasped the crop straw resources and its utilization as feed in this province,deeply analyzed the existing problems,and put forward countermeasures and suggestions according to the actual situation in Sichuan,which plays an important role in accelerating the process of straw feed utilization,promoting green development,implementing the rural revitalization strategy,and building a beautiful Sichuan.展开更多
Worldwide, the demand for agro-organic foods that are healthy, nutritious, and environmentally friendly is increasing dramatically across all nations among consumers. Tomatoes being one of the dietary requirements in ...Worldwide, the demand for agro-organic foods that are healthy, nutritious, and environmentally friendly is increasing dramatically across all nations among consumers. Tomatoes being one of the dietary requirements in almost every meal is not exceptional and its availability in the market all year round is very important to farmers as well as consumers because it is highly demanded as a vegetable par excellence;which is either eaten raw in salads, cooked or processed into liquid ingredients. This study investigates the impact of chicken, goat, and cow manure treatments on tomato plant growth response to height, leaf length, and width, as well as fruit yield. The experimental field trials were conducted over two planting seasons in Mundri West County. It followed a Complete Randomized Design (CRD) approach, consisting of four blocks. Each block contained three treatments replicated four times and a control group. The data of measured parameters from all 16 plots were subjected to one-way Analysis of Variance (ANOVA) using the Gen Stat 14th Edition software. The findings indicate significant differences (P < 0.05) among all the different organic manure applications on tomato plant growth parameters compared to the control group. Chicken manure resulted in the tallest tomato plants (30.1 and 37.9 cm), longest leaves (9.9 and 10.4 cm), and widest leaves (2.1 and 2.5 cm) in both seasons respectively. The study showed plots treated with chicken manure had a highly significant impact (P < 0.05) on the prevalence of aphids (1.0) and white flies (1.4) with the lowest value compared to those with cow and goat manure applied. Additionally, chicken manure led to the highest yields (39.30 and 49.49 tons/ha) in both seasons. Based on these findings, it can be concluded that using chicken manure effectively improves the performance of Rio Grande Tomatoes, and thus, farmers are encouraged to utilize chicken manure to maximize their tomato yields.展开更多
Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(st...Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(straw incorporation, paddy water management, nitrogen(N) fertilizer dose, manure application,and biochar addition) on soil P availability(e.g., soil total P(STP), soil available P(SAP), soil microbial biomass P(SMBP), and rice P uptake as well as P use efficiency(PUE)) over four cropping seasons in a rice-rice cropping system, in subtropical central China. Compared to the non-straw treatment(control,using full dose of chemical N fertilizer), straw incorporation increased SAP and SMBP by 9.3%–18.5% and 15.5%–35.4%, respectively;substituting half the chemical N fertilizer dose with pig manure and the biochar application increased STP, SAP, and SMBP by 10.5%–48.3%, 30.2%–236.0%, and 19.8%–72.4%,respectively, mainly owing to increased soil P and organic carbon inputs;adding a half dose of N and no N input(reduced N treatments) increased STP and SAP by 2.6%–7.5% and 19.8%–33.7%, respectively, due to decreased soil P outputs. Thus, soil P availability was greatly affected by soil P input and use. The continuous flooding water regime without straw addition significantly decreased SMBP by 11.4% compared to corresponding treatments under a mid-season drainage water regime. Total P uptake by rice grains and straws at the harvest stage increased under straw incorporation and under pig manure application, but decreased under the reduced N treatments and under biochar application at a rate of 48 t ha-1, compared to the control. Rice P uptake was significantly positively correlated with rice biomass, and both were positively correlated with N fertilizer application rates, SAP, SMBP, and STP. Phosphorus use efficiency generally increased under straw incorporation but decreased under the reduced N treatments and under the manure application(with excessive P input), compared to the control. These results showed that straw incorporation can be used to increase soil P availability and PUE while decreasing the use of chemical P fertilizers. When substituting chemical fertilizers with pig manure, excess P inputs should be avoided in order to reduce P accumulation in the soil as well as the environmental risks from non-point source pollution.展开更多
基金funded by the National Natural Science Foundation of China (41201284, 41401337)the China Postdoctoral Science Foundation (2013M542406)
文摘Increased food demand from the rapidly growing human population has caused intensive land transition from desert to farmland in arid regions of northwest China. In this developing ecosystem, the optimized fertilization strategies are becoming an urgent need for sustainable crop productivity, efficient resources use, together with the delivery of ecosystems services including soil carbon(C) and nitrogen(N) accumulation. Through a 7-year field experiment with 9 fertilization treatments in a newly cultivated farmland, we tested whether different fertilizations had significant influences on soil C and N accumulation in this developing ecosystem, and also investigated possible mechanisms for this influence. The results showed that applying organic manure in cultivated farmland significantly increased the soil C and N accumulation rates; this influence was greater when it was combined with chemical fertilizer, accumulating 2.01 t C and 0.11 t N ha^(–1) yr^(–1) in the most successful fertilization treatment. These high rates of C and N accumulation were found associated with increased input of C and N, although the relationship between the N accumulation rate and N input was not significant. The improved soil physical properties was observed under only organic manure and integrated fertilization treatments, and the significant relationship between soil C or N and soil physical properties were also found in this study. The results suggest that in newly cultivated farmland, long term organic manure and integrated fertilization can yield significant benefits for soil C and N accumulation, and deliver additional influence on physical properties.
基金funded by the National Natural Science Foundation of China (41371251,31370009)the National Basic Research Program of China (2011CB403204)
文摘The long-term productivity of a soil is greatly influenced by cation exchange capacity(CEC).Moreover,interactions between dominant base cations and other nutrients are important for the health and stability of grassland ecosystems.Soil exchangeable base cations and cation ratios were examined in a 11-year experiment with sheep manure application rates 0–1,500 g/(m2?a) in a semi-arid steppe in Inner Mongolia of China,aiming to clarify the relationships of base cations with soil p H,buffer capacity and fertility.Results showed that CEC and contents of exchangeable calcium(Ca2+),magnesium(Mg2+),potassium(K+) and sodium(Na+) were significantly increased,and Ca2+ saturation tended to decrease,while K+ saturation tended to increase with the increases of sheep manure application rates.The Ca2+/Mg2+ and Ca2+/K+ ratios decreased,while Mg2+,K+ and Na+ saturations increased with increasing manure application rates.Both base cations and CEC were significantly and positively correlated with soil organic carbon(SOC) and soil p H.The increases of SOC and soil p H would be the dominant factors that contribute to the increase of cations in soil.On a comparison with the initial soil p H before the experiment,we deduced that sheep manure application could partly buffer soil p H decrease potentially induced by atmospheric deposition of nitrogen and sulfur.Our results indicate that sheep manure application is beneficial to the maintenance of base cations and the buffering of soil acidification,and therefore can improve soil fertility in the semi-arid steppes of northeastern China.
基金supported financially by the National Natural Science Foundation of China(41807102,U1710255-3 and 41907215)the Special Fund for Science and Technology Innovation Teams of Shanxi Province,China(202304051001042)the Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University,China(2022YQPYGC05)。
文摘We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).
文摘Global food production is expected to double by 2050 for feeding 9 billion people(Godfray et al.2010),but yields had stagnated or even collapsed in 24–39%of crop-growing areas over the period 1961–2008(Ray et al.2012),
基金Mutton Sheep High-Quality and High-Yield Forage Variety Selection and Production Application Post of Sichuan Mutton Sheep Innovation Team(sccxtd-2020-14).
文摘Utilizing straw as feed and applying cattle and sheep manure fertilizer to the field plays an important role in solving the shortage of feed raw material resources,alleviating the conflict between human beings and livestock,and realizing the full utilization of straw as a resource and green and low-carbon circular development.We carried out an investigation on the feed utilization of crop straw in Sichuan Province,comprehensively grasped the crop straw resources and its utilization as feed in this province,deeply analyzed the existing problems,and put forward countermeasures and suggestions according to the actual situation in Sichuan,which plays an important role in accelerating the process of straw feed utilization,promoting green development,implementing the rural revitalization strategy,and building a beautiful Sichuan.
文摘Worldwide, the demand for agro-organic foods that are healthy, nutritious, and environmentally friendly is increasing dramatically across all nations among consumers. Tomatoes being one of the dietary requirements in almost every meal is not exceptional and its availability in the market all year round is very important to farmers as well as consumers because it is highly demanded as a vegetable par excellence;which is either eaten raw in salads, cooked or processed into liquid ingredients. This study investigates the impact of chicken, goat, and cow manure treatments on tomato plant growth response to height, leaf length, and width, as well as fruit yield. The experimental field trials were conducted over two planting seasons in Mundri West County. It followed a Complete Randomized Design (CRD) approach, consisting of four blocks. Each block contained three treatments replicated four times and a control group. The data of measured parameters from all 16 plots were subjected to one-way Analysis of Variance (ANOVA) using the Gen Stat 14th Edition software. The findings indicate significant differences (P < 0.05) among all the different organic manure applications on tomato plant growth parameters compared to the control group. Chicken manure resulted in the tallest tomato plants (30.1 and 37.9 cm), longest leaves (9.9 and 10.4 cm), and widest leaves (2.1 and 2.5 cm) in both seasons respectively. The study showed plots treated with chicken manure had a highly significant impact (P < 0.05) on the prevalence of aphids (1.0) and white flies (1.4) with the lowest value compared to those with cow and goat manure applied. Additionally, chicken manure led to the highest yields (39.30 and 49.49 tons/ha) in both seasons. Based on these findings, it can be concluded that using chicken manure effectively improves the performance of Rio Grande Tomatoes, and thus, farmers are encouraged to utilize chicken manure to maximize their tomato yields.
基金supported by the National Key Research and Development Program of China (Nos. 2016YFD0200307 and 2018YFC0213302)the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2017418)。
文摘Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(straw incorporation, paddy water management, nitrogen(N) fertilizer dose, manure application,and biochar addition) on soil P availability(e.g., soil total P(STP), soil available P(SAP), soil microbial biomass P(SMBP), and rice P uptake as well as P use efficiency(PUE)) over four cropping seasons in a rice-rice cropping system, in subtropical central China. Compared to the non-straw treatment(control,using full dose of chemical N fertilizer), straw incorporation increased SAP and SMBP by 9.3%–18.5% and 15.5%–35.4%, respectively;substituting half the chemical N fertilizer dose with pig manure and the biochar application increased STP, SAP, and SMBP by 10.5%–48.3%, 30.2%–236.0%, and 19.8%–72.4%,respectively, mainly owing to increased soil P and organic carbon inputs;adding a half dose of N and no N input(reduced N treatments) increased STP and SAP by 2.6%–7.5% and 19.8%–33.7%, respectively, due to decreased soil P outputs. Thus, soil P availability was greatly affected by soil P input and use. The continuous flooding water regime without straw addition significantly decreased SMBP by 11.4% compared to corresponding treatments under a mid-season drainage water regime. Total P uptake by rice grains and straws at the harvest stage increased under straw incorporation and under pig manure application, but decreased under the reduced N treatments and under biochar application at a rate of 48 t ha-1, compared to the control. Rice P uptake was significantly positively correlated with rice biomass, and both were positively correlated with N fertilizer application rates, SAP, SMBP, and STP. Phosphorus use efficiency generally increased under straw incorporation but decreased under the reduced N treatments and under the manure application(with excessive P input), compared to the control. These results showed that straw incorporation can be used to increase soil P availability and PUE while decreasing the use of chemical P fertilizers. When substituting chemical fertilizers with pig manure, excess P inputs should be avoided in order to reduce P accumulation in the soil as well as the environmental risks from non-point source pollution.