District Ghizer is a rugged mountainous territory which experiences several landslides each year. There are 16 major landslide areas and 53 villages that are at high risk to hazards. Keeping in view the severity of na...District Ghizer is a rugged mountainous territory which experiences several landslides each year. There are 16 major landslide areas and 53 villages that are at high risk to hazards. Keeping in view the severity of natural hazards, the present study was designed to generate landslide susceptibility map based on twelve causative factors viz., slope, aspect, elevation, drainage network, Stream Power Index (SPI), Topographic Wetness Index (TWI), lithological units, fault lines, rainfall, road network, land cover and soil texture. Soil texture was determined by particle size analysis and data for other factors were acquired from freely available sources. Analytical Hierarchy Process (AHP) was employed to identify major landslide causative factors in the district Ghizer. Further, a temporal assessment from 1999 till 2015 was generated to assess the impact of land cover change on landslides. It indicated that the barren soil/ exposed rocks and glaciers have reduced while the vegetation and water classes have shown increment. The total area that lies in moderate to very high landslide susceptible zones was 74.38%, while slope is the main landslide causative factor in the district Ghizer. Validation of the susceptibility map showed 88.1% of the landslides in the study area had occurred in the moderate to very high susceptible zones.展开更多
Landslide is considered as one of the most severe threats to human life and property in the hilly areas of the world.The number of landslides and the level of damage across the globe has been increasing over time.Ther...Landslide is considered as one of the most severe threats to human life and property in the hilly areas of the world.The number of landslides and the level of damage across the globe has been increasing over time.Therefore,landslide management is essential to maintain the natural and socio-economic dynamics of the hilly region.Rorachu river basin is one of the most landslide-prone areas of the Sikkim selected for the present study.The prime goal of the study is to prepare landslide susceptibility maps(LSMs)using computer-based advanced machine learning techniques and compare the performance of the models.To properly understand the existing spatial relation with the landslide,twenty factors,including triggering and causative factors,were selected.A deep learning algorithm viz.convolutional neural network model(CNN)and three popular machine learning techniques,i.e.,random forest model(RF),artificial neural network model(ANN),and bagging model,were employed to prepare the LSMs.Two separate datasets including training and validation were designed by randomly taken landslide and nonlandslide points.A ratio of 70:30 was considered for the selection of both training and validation points.Multicollinearity was assessed by tolerance and variance inflation factor,and the role of individual conditioning factors was estimated using information gain ratio.The result reveals that there is no severe multicollinearity among the landslide conditioning factors,and the triggering factor rainfall appeared as the leading cause of the landslide.Based on the final prediction values of each model,LSM was constructed and successfully portioned into five distinct classes,like very low,low,moderate,high,and very high susceptibility.The susceptibility class-wise distribution of landslides shows that more than 90%of the landslide area falls under higher landslide susceptibility grades.The precision of models was examined using the area under the curve(AUC)of the receiver operating characteristics(ROC)curve and statistical methods like root mean square error(RMSE)and mean absolute error(MAE).In both datasets(training and validation),the CNN model achieved the maximum AUC value of 0.903 and 0.939,respectively.The lowest value of RMSE and MAE also reveals the better performance of the CNN model.So,it can be concluded that all the models have performed well,but the CNN model has outperformed the other models in terms of precision.展开更多
文摘District Ghizer is a rugged mountainous territory which experiences several landslides each year. There are 16 major landslide areas and 53 villages that are at high risk to hazards. Keeping in view the severity of natural hazards, the present study was designed to generate landslide susceptibility map based on twelve causative factors viz., slope, aspect, elevation, drainage network, Stream Power Index (SPI), Topographic Wetness Index (TWI), lithological units, fault lines, rainfall, road network, land cover and soil texture. Soil texture was determined by particle size analysis and data for other factors were acquired from freely available sources. Analytical Hierarchy Process (AHP) was employed to identify major landslide causative factors in the district Ghizer. Further, a temporal assessment from 1999 till 2015 was generated to assess the impact of land cover change on landslides. It indicated that the barren soil/ exposed rocks and glaciers have reduced while the vegetation and water classes have shown increment. The total area that lies in moderate to very high landslide susceptible zones was 74.38%, while slope is the main landslide causative factor in the district Ghizer. Validation of the susceptibility map showed 88.1% of the landslides in the study area had occurred in the moderate to very high susceptible zones.
文摘Landslide is considered as one of the most severe threats to human life and property in the hilly areas of the world.The number of landslides and the level of damage across the globe has been increasing over time.Therefore,landslide management is essential to maintain the natural and socio-economic dynamics of the hilly region.Rorachu river basin is one of the most landslide-prone areas of the Sikkim selected for the present study.The prime goal of the study is to prepare landslide susceptibility maps(LSMs)using computer-based advanced machine learning techniques and compare the performance of the models.To properly understand the existing spatial relation with the landslide,twenty factors,including triggering and causative factors,were selected.A deep learning algorithm viz.convolutional neural network model(CNN)and three popular machine learning techniques,i.e.,random forest model(RF),artificial neural network model(ANN),and bagging model,were employed to prepare the LSMs.Two separate datasets including training and validation were designed by randomly taken landslide and nonlandslide points.A ratio of 70:30 was considered for the selection of both training and validation points.Multicollinearity was assessed by tolerance and variance inflation factor,and the role of individual conditioning factors was estimated using information gain ratio.The result reveals that there is no severe multicollinearity among the landslide conditioning factors,and the triggering factor rainfall appeared as the leading cause of the landslide.Based on the final prediction values of each model,LSM was constructed and successfully portioned into five distinct classes,like very low,low,moderate,high,and very high susceptibility.The susceptibility class-wise distribution of landslides shows that more than 90%of the landslide area falls under higher landslide susceptibility grades.The precision of models was examined using the area under the curve(AUC)of the receiver operating characteristics(ROC)curve and statistical methods like root mean square error(RMSE)and mean absolute error(MAE).In both datasets(training and validation),the CNN model achieved the maximum AUC value of 0.903 and 0.939,respectively.The lowest value of RMSE and MAE also reveals the better performance of the CNN model.So,it can be concluded that all the models have performed well,but the CNN model has outperformed the other models in terms of precision.