A variation-aware task mapping approach is proposed for a multi-core network-on-chips with redundant cores, which includes both the design-time mapping and run-time scheduling algorithms. Firstly, a design-time geneti...A variation-aware task mapping approach is proposed for a multi-core network-on-chips with redundant cores, which includes both the design-time mapping and run-time scheduling algorithms. Firstly, a design-time genetic task mapping algorithm is proposed during the design stage to generate multiple task mapping solutions which cover a maximum range of chips. Then, during the run, one optimal task mapping solution is selected. Additionally, logical cores are mapped to physically available cores. Both core asymmetry and topological changes are considered in the proposed approach. Experimental results show that the performance yield of the proposed approach is 96% on average, and the communication cost, power consumption and peak temperature are all optimized without loss of performance yield.展开更多
An optimal algorithmic approach to task scheduling for, triplet based architecture(TriBA), is proposed in this paper. TriBA is considered to be a high performance, distributed parallel computing architecture. TriBA ...An optimal algorithmic approach to task scheduling for, triplet based architecture(TriBA), is proposed in this paper. TriBA is considered to be a high performance, distributed parallel computing architecture. TriBA consists of a 2D grid of small, programmable processing units, each physically connected to its three neighbors. In parallel or distributed environment an efficient assignment of tasks to the processing elements is imperative to achieve fast job turnaround time. Moreover, the sojourn time experienced by each individual job should be minimized. The arriving jobs are comprised of parallel applications, each consisting of multiple-independent tasks that must be instantaneously assigned to processor queues, as they arrive. The processors independently and concurrently service these tasks. The key scheduling issues is, when some queue backlogs are small, an incoming job should first spread its tasks to those lightly loaded queues in order to take advantage of the parallel processing gain. Our algorithmic approach achieves optimality in task scheduling by assigning consecutive tasks to a triplet of processors exploiting locality in tasks. The experimental results show that tasks allocation to triplets of processing elements is efficient and optimal. Comparison to well accepted interconnection strategy, 2D mesh, is shown to prove the effectiveness of our algorithmic approach for TriBA. Finally we conclude that TriBA can be an efficient interconnection strategy for computations intensive applications, if tasks assignment is carried out optimally using algorithmic approach.展开更多
文摘A variation-aware task mapping approach is proposed for a multi-core network-on-chips with redundant cores, which includes both the design-time mapping and run-time scheduling algorithms. Firstly, a design-time genetic task mapping algorithm is proposed during the design stage to generate multiple task mapping solutions which cover a maximum range of chips. Then, during the run, one optimal task mapping solution is selected. Additionally, logical cores are mapped to physically available cores. Both core asymmetry and topological changes are considered in the proposed approach. Experimental results show that the performance yield of the proposed approach is 96% on average, and the communication cost, power consumption and peak temperature are all optimized without loss of performance yield.
文摘An optimal algorithmic approach to task scheduling for, triplet based architecture(TriBA), is proposed in this paper. TriBA is considered to be a high performance, distributed parallel computing architecture. TriBA consists of a 2D grid of small, programmable processing units, each physically connected to its three neighbors. In parallel or distributed environment an efficient assignment of tasks to the processing elements is imperative to achieve fast job turnaround time. Moreover, the sojourn time experienced by each individual job should be minimized. The arriving jobs are comprised of parallel applications, each consisting of multiple-independent tasks that must be instantaneously assigned to processor queues, as they arrive. The processors independently and concurrently service these tasks. The key scheduling issues is, when some queue backlogs are small, an incoming job should first spread its tasks to those lightly loaded queues in order to take advantage of the parallel processing gain. Our algorithmic approach achieves optimality in task scheduling by assigning consecutive tasks to a triplet of processors exploiting locality in tasks. The experimental results show that tasks allocation to triplets of processing elements is efficient and optimal. Comparison to well accepted interconnection strategy, 2D mesh, is shown to prove the effectiveness of our algorithmic approach for TriBA. Finally we conclude that TriBA can be an efficient interconnection strategy for computations intensive applications, if tasks assignment is carried out optimally using algorithmic approach.