To enhance the image motion compensation accuracy of off-axis three-mirror anastigmatic( TMA)three-line array aerospace mapping cameras,a new method of image motion velocity field modeling is proposed in this paper. F...To enhance the image motion compensation accuracy of off-axis three-mirror anastigmatic( TMA)three-line array aerospace mapping cameras,a new method of image motion velocity field modeling is proposed in this paper. Firstly,based on the imaging principle of mapping cameras,an analytical expression of image motion velocity of off-axis TMA three-line array aerospace mapping cameras is deduced from different coordinate systems we established and the attitude dynamics principle. Then,the case of a three-line array mapping camera is studied,in which the simulation of the focal plane image motion velocity fields of the forward-view camera,the nadir-view camera and the backward-view camera are carried out,and the optimization schemes for image motion velocity matching and drift angle matching are formulated according the simulation results. Finally,this method is verified with a dynamic imaging experimental system. The results are indicative of that when image motion compensation for nadir-view camera is conducted using the proposed image motion velocity field model,the line pair of target images at Nyquist frequency is clear and distinguishable. Under the constraint that modulation transfer function( MTF) reduces by 5%,when the horizontal frequencies of the forward-view camera and the backward-view camera are adjusted uniformly according to the proposed image motion velocity matching scheme,the time delay integration( TDI) stages reach 6 at most. When the TDI stages are more than 6,the three groups of camera will independently undergo horizontal frequency adjustment. However, when the proposed drift angle matching scheme is adopted for uniform drift angle adjustment,the number of TDI stages will not exceed 81. The experimental results have demonstrated the validity and accuracy of the proposed image motion velocity field model and matching optimization scheme,providing reliable basis for on-orbit image motion compensation of aerospace mapping cameras.展开更多
The color composite digital mapping camera (DMC) images are produced by the post-processing software of Z/I imaging. But the failure of radiometric correction in post-processing leads to residual radiometric differe...The color composite digital mapping camera (DMC) images are produced by the post-processing software of Z/I imaging. But the failure of radiometric correction in post-processing leads to residual radiometric differences between CCD images, which then affect the quality of the images in further applications. This paper, via analyzing the characters and causes of such a phenomenon, proposes a repair approach based on hierarchical location using edge curve. The approach employs a hierarchical strategy to locate the transition area and seam-line automatically and then repair the image through the global reconstruction between CCD images and the local reconstruction in the transition area. Experiments indicate that the approach proposed by this paper is feasible and can improve the quality of images effectively.展开更多
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.863-2-5-1-13B)the Jilin Province Science and Technology Development Plan Item(Grant No.20130522107JH)
文摘To enhance the image motion compensation accuracy of off-axis three-mirror anastigmatic( TMA)three-line array aerospace mapping cameras,a new method of image motion velocity field modeling is proposed in this paper. Firstly,based on the imaging principle of mapping cameras,an analytical expression of image motion velocity of off-axis TMA three-line array aerospace mapping cameras is deduced from different coordinate systems we established and the attitude dynamics principle. Then,the case of a three-line array mapping camera is studied,in which the simulation of the focal plane image motion velocity fields of the forward-view camera,the nadir-view camera and the backward-view camera are carried out,and the optimization schemes for image motion velocity matching and drift angle matching are formulated according the simulation results. Finally,this method is verified with a dynamic imaging experimental system. The results are indicative of that when image motion compensation for nadir-view camera is conducted using the proposed image motion velocity field model,the line pair of target images at Nyquist frequency is clear and distinguishable. Under the constraint that modulation transfer function( MTF) reduces by 5%,when the horizontal frequencies of the forward-view camera and the backward-view camera are adjusted uniformly according to the proposed image motion velocity matching scheme,the time delay integration( TDI) stages reach 6 at most. When the TDI stages are more than 6,the three groups of camera will independently undergo horizontal frequency adjustment. However, when the proposed drift angle matching scheme is adopted for uniform drift angle adjustment,the number of TDI stages will not exceed 81. The experimental results have demonstrated the validity and accuracy of the proposed image motion velocity field model and matching optimization scheme,providing reliable basis for on-orbit image motion compensation of aerospace mapping cameras.
基金Supported by the National Basic Research Program of China (Grant No. 2006CB701302)the Youth Fundation Plan of Wuhan (Grant No.200750731253)
文摘The color composite digital mapping camera (DMC) images are produced by the post-processing software of Z/I imaging. But the failure of radiometric correction in post-processing leads to residual radiometric differences between CCD images, which then affect the quality of the images in further applications. This paper, via analyzing the characters and causes of such a phenomenon, proposes a repair approach based on hierarchical location using edge curve. The approach employs a hierarchical strategy to locate the transition area and seam-line automatically and then repair the image through the global reconstruction between CCD images and the local reconstruction in the transition area. Experiments indicate that the approach proposed by this paper is feasible and can improve the quality of images effectively.