In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobi...In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.展开更多
In a previous work,Zayed and Al-Nowehy have applied the Riccati equation mapping method combined with the generalized extended(G/G)-expansion method and found new exact solutions of the nonlinear KPP equation.In the ...In a previous work,Zayed and Al-Nowehy have applied the Riccati equation mapping method combined with the generalized extended(G/G)-expansion method and found new exact solutions of the nonlinear KPP equation.In the present article,we propose a different method,namely,a new sub-equation method consists of the Riccati equation mapping method and the(G/G,1/G)-expansion method to find new exact solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity in optical fiber materials.This proposed method is not found elsewhere.Hyperbolic,trigonometric and rational function solutions are given.New solutions of the generalized Riccati equation are presented for the first time which are not reported previously.The solutions of the given nonlinear equation can be applied in ocean engineering for calculating the height of tides in the ocean.展开更多
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y605312.
文摘In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.
文摘In a previous work,Zayed and Al-Nowehy have applied the Riccati equation mapping method combined with the generalized extended(G/G)-expansion method and found new exact solutions of the nonlinear KPP equation.In the present article,we propose a different method,namely,a new sub-equation method consists of the Riccati equation mapping method and the(G/G,1/G)-expansion method to find new exact solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity in optical fiber materials.This proposed method is not found elsewhere.Hyperbolic,trigonometric and rational function solutions are given.New solutions of the generalized Riccati equation are presented for the first time which are not reported previously.The solutions of the given nonlinear equation can be applied in ocean engineering for calculating the height of tides in the ocean.