为了进一步研究连续体结构拓扑优化模型的合理性和可行性,基于独立、连续、映射(independent continuous mapping,ICM)方法,在满足结构位移约束的条件下,通过引入复合指数形式过滤函数对位移约束下质量最小化(minimum weight with a dis...为了进一步研究连续体结构拓扑优化模型的合理性和可行性,基于独立、连续、映射(independent continuous mapping,ICM)方法,在满足结构位移约束的条件下,通过引入复合指数形式过滤函数对位移约束下质量最小化(minimum weight with a displacement constraint,MWDC)模型进行了改进,建立了基于独立连续变量和复合指数函数的位移约束平面连续体结构拓扑优化模型,并进行了优化求解.同时,利用M语言,基于Matlab软件平台,开发了相应的拓扑优化计算程序,并针对4种典型平面连续体结构进行了数值验证,分别比较分析了体积约束下的柔顺度最小化(minimum compliance with a volume constraint,MCVC)模型、MWDC模型以及改进的MWDC模型所得到的最优拓扑结构.数值结果表明:采用复合指数形式过滤函数改进的MWDC优化模型迭代次数更少,优化求解计算效率更高.展开更多
This paper studies the Gauss map of submanifolds in space forms defined by Willmore andSaleemi. By using Morse functions,it is proved that the degree of Gauss map is the Eulernumber of the submanifold.The tight immers...This paper studies the Gauss map of submanifolds in space forms defined by Willmore andSaleemi. By using Morse functions,it is proved that the degree of Gauss map is the Eulernumber of the submanifold.The tight immersions are also studied.展开更多
文摘为了进一步研究连续体结构拓扑优化模型的合理性和可行性,基于独立、连续、映射(independent continuous mapping,ICM)方法,在满足结构位移约束的条件下,通过引入复合指数形式过滤函数对位移约束下质量最小化(minimum weight with a displacement constraint,MWDC)模型进行了改进,建立了基于独立连续变量和复合指数函数的位移约束平面连续体结构拓扑优化模型,并进行了优化求解.同时,利用M语言,基于Matlab软件平台,开发了相应的拓扑优化计算程序,并针对4种典型平面连续体结构进行了数值验证,分别比较分析了体积约束下的柔顺度最小化(minimum compliance with a volume constraint,MCVC)模型、MWDC模型以及改进的MWDC模型所得到的最优拓扑结构.数值结果表明:采用复合指数形式过滤函数改进的MWDC优化模型迭代次数更少,优化求解计算效率更高.
文摘This paper studies the Gauss map of submanifolds in space forms defined by Willmore andSaleemi. By using Morse functions,it is proved that the degree of Gauss map is the Eulernumber of the submanifold.The tight immersions are also studied.