In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is prop...In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is proposed.Firstly,the three-phase current curve of the switch machine recorded by the micro-computer monitoring system is dealt with segmentally and then the feature parameters of the three-phase current are calculated according to the action principle of the switch machine.Due to the high dimension of initial features,the DBSCAN algorithm is used to separate the sensitive features of fault diagnosis and construct the diagnostic sensitive feature set.Then,the particle swarm optimization(PSO)algorithm is used to adjust the weight of SOM network to modify the rules to avoid“dead neurons”.Finally,the PSO-SOM network fault classifier is designed to complete the classification and diagnosis of the samples to be tested.The experimental results show that this method can judge the fault mode of switch control circuit with less training samples,and the accuracy of fault diagnosis is higher than that of traditional SOM network.展开更多
Radio block center(RBC)system is the core equipment of China train control system-3(CTCS-3).Now,the fault analysis of RBC system mainly depends on manual work,and the diagnostic results are inaccurate and inefficient....Radio block center(RBC)system is the core equipment of China train control system-3(CTCS-3).Now,the fault analysis of RBC system mainly depends on manual work,and the diagnostic results are inaccurate and inefficient.Therefore,the intelligent fault diagnosis method of RBC system based on one-hot model,kernel principal component analysis(KPCA)and self-organizing map(SOM)network was proposed.Firstly,the fault document matrix based on one-hot model was constructed by the fault feature lexicon selected manually and fault tracking record table.Secondly,the KPCA method was used to reduce the dimension and noise of the fault document matrix to avoid information redundancy.Finally,the processed data were input into the SOM network to train the KPCA-SOM fault classification model.Compared with back propagation(BP)neural network algorithm and SOM network algorithm,common fault patterns of train control RBC system can be effectively distinguished by KPCA-SOM intelligent diagnosis model,and the accuracy and processing efficiency are further improved.展开更多
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu...Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.展开更多
We investigated the intraseasonal variability of equatorial Pacific subsurface temperature and its relationship with El Nino-Southern Oscillation(ENSO) using Self-Organizing Maps(SOM) analysis.Variation in intraseason...We investigated the intraseasonal variability of equatorial Pacific subsurface temperature and its relationship with El Nino-Southern Oscillation(ENSO) using Self-Organizing Maps(SOM) analysis.Variation in intraseasonal subsurface temperature is mainly found along the thermocline.The SOM patterns concentrate in basin-wide seesaw or sandwich structures along an east-west axis.Both the seesaw and sandwich SOM patterns oscillate with periods of 55 to 90 days,with the sequence of them showing features of equatorial intraseasonal Kelvin wave,and have marked interannual variations in their occurrence frequencies.Further examination shows that the interannual variability of the SOM patterns is closely related to ENSO;and maxima in composite interannual variability of the SOM patterns are located in the central Pacific during CP El Nino and in the eastern Pacific during EP El Nino.The se results imply that some of the ENSO forcing is manife sted through changes in the occurrence frequency of intraseasonal patterns,in which the change of the intraseasonal Kelvin wave plays an important role.展开更多
Due to rapid development in software industry, it was necessary to reduce time and efforts in the software development process. Software Reusability is an important measure that can be applied to improve software deve...Due to rapid development in software industry, it was necessary to reduce time and efforts in the software development process. Software Reusability is an important measure that can be applied to improve software development and software quality. Reusability reduces time, effort, errors, and hence the overall cost of the development process. Reusability prediction models are established in the early stage of the system development cycle to support an early reusability assessment. In Object-Oriented systems, Reusability of software components (classes) can be obtained by investigating its metrics values. Analyzing software metric values can help to avoid developing components from scratch. In this paper, we use Chidamber and Kemerer (CK) metrics suite in order to identify the reuse level of object-oriented classes. Self-Organizing Map (SOM) was used to cluster datasets of CK metrics values that were extracted from three different java-based systems. The goal was to find the relationship between CK metrics values and the reusability level of the class. The reusability level of the class was classified into three main categorizes (High Reusable, Medium Reusable and Low Reusable). The clustering was based on metrics threshold values that were used to achieve the experiments. The proposed methodology succeeds in classifying classes to their reusability level (High Reusable, Medium Reusable and Low Reusable). The experiments show how SOM can be applied on software CK metrics with different sizes of SOM grids to provide different levels of metrics details. The results show that Depth of Inheritance Tree (DIT) and Number of Children (NOC) metrics dominated the clustering process, so these two metrics were discarded from the experiments to achieve a successful clustering. The most efficient SOM topology [2 × 2] grid size is used to predict the reusability of classes.展开更多
Based on the driver surveillance video data and controller area network(CAN)data,the methods of studying commercial vehicles’driving behavior is relatively advanced.However,these methods have difficulty in covering p...Based on the driver surveillance video data and controller area network(CAN)data,the methods of studying commercial vehicles’driving behavior is relatively advanced.However,these methods have difficulty in covering private vehicles.Naturalistic driving studies have disadvantages of small sample size and high cost,one new driving behavior evaluation method using massive vehicle trajectory data is put forward.An automatic encoding machine is used to reduce the noise of raw data,and then driving dynamics and self-organizing mapping(SOM)classification are used to give thresholds or the judgement method of overspeed,rapid speed change,rapid turning and rapid lane changing.The proportion of different driving behaviors and typical dangerous driving behaviors is calculated,then the temporal and spatial distribution of drivers’driving behavior and the driving behavior characteristics on typical roads are analyzed.Driving behaviors on accident-prone road sections and normal road sections are compared.Results show that in Shenzhen,frequent lane changing and overspeed are the most common unsafe driving behaviors;16.1%drivers have relatively aggressive driving behavior;the proportion of dangerous driving behavior is higher outside the original economic special zone;dangerous driving behavior is highly correlated with traffic accident frequency.展开更多
Varieties of approaches and algorithms have been presented to identify the distribution of elements. Previous researches based on the type of problem, categorized their data in proper clusters or classes. This means t...Varieties of approaches and algorithms have been presented to identify the distribution of elements. Previous researches based on the type of problem, categorized their data in proper clusters or classes. This means that the process of solution could be supervised or unsupervised. In cases, where there is no idea about dependency of samples to specific groups, clustering methods (unsupervised) are applied. About geochemistry data, since various elements are involved, in addition to the complex nature of geochemical data, clustering algorithms would be useful for recognition of elements distribution. In this paper, Self-Organizing Map (SOM) algorithm, as an unsupervised method, is applied for clustering samples based on REEs contents. For this reason the Choghart Fe-REE deposit (Bafq district, central Iran), was selected as study area and dataset was a collection of 112 lithology samples that were assayed with laboratory tests such as ICP-MS and XRF analysis. In this study, input vectors include 19 features which are coordinates x, y, z and concentrations of REEs as well as the concentration of Phosphate (P<sub>2</sub>O<sub>5</sub>) since the apatite is the main source of REEs in this particular research. Four clusters were determined as an optimal number of clusters using silhouette criterion as well as k-means clustering method and SOM. Therefore, using self-organizing map, study area was subdivided in four zones. These four zones can be described as phosphate type, albitofyre type, metasomatic and phosphorus iron ore, and Iron Ore type. Phosphate type is the most prone to rare earth elements. Eventually, results were validated with laboratory analysis.展开更多
This paper reports distinct spatio-spectral properties of Zen-meditation EEG (electroencephalograph), compared with resting EEG, by implementing unsupervised machine learning scheme in clustering the brain mappings of...This paper reports distinct spatio-spectral properties of Zen-meditation EEG (electroencephalograph), compared with resting EEG, by implementing unsupervised machine learning scheme in clustering the brain mappings of centroid frequency (BMFc). Zen practitioners simultaneously concentrate on the third ventricle, hypothalamus and corpora quadrigemina touniversalize all brain neurons to construct a <i>detached</i> brain and gradually change the normal brain traits, leading to the process of brain-neuroplasticity. During such tri-aperture concentration, EEG exhibits prominent diffuse high-frequency oscillations. Unsupervised self-organizing map (SOM), clusters the dataset of quantitative EEG by matching the input feature vector Fc and the output cluster center through the SOM network weights. Input dataset contains brain mappings of 30 centroid frequencies extracted from CWT (continuous wavelet transform) coefficients. According to SOM clustering results, resting EEG is dominated by global low-frequency (<14 Hz) activities, except channels T7, F7 and TP7 (>14.4 Hz);whereas Zen-meditation EEG exhibits globally high-frequency (>16 Hz) activities throughout the entire record. Beta waves with a wide range of frequencies are often associated with active concentration. Nonetheless, clinic report discloses that benzodiazepines, medication treatment for anxiety, insomnia and panic attacks to relieve mind/body stress, often induce <i>beta buzz</i>. We may hypothesize that Zen-meditation practitioners attain the unique state of mindfulness concentration under optimal body-mind relaxation.展开更多
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ...Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.展开更多
With advancements in technology, personal computing devices are better adapted for and further integrated into people’s lives and homes. The integration of technology into society also results in an increasing desire...With advancements in technology, personal computing devices are better adapted for and further integrated into people’s lives and homes. The integration of technology into society also results in an increasing desire to control who and what has access to sensitive information, especially for vulnerable people including children and the elderly. With blockchain rise as a technology that can revolutionize the world, it is now possible to have an immutable audit trail of locational data over time. By controlling the process through inexpensive equipment in the home, it is possible to control whom has access to such personal data. This paper presents a block-chain based family security system for outdoor tracking and in-house monitoring of users’ activities via sensors to detect anomalies in users’ daily activities with the integration of Artificial Intelligence (AI). For outdoor tracking the locations of the consenting family members’ smart phones are logged and stored in a private blockchain which can be accessed through a node installed in the family home on a computer. The data for the whereabouts and daily activities of family members stays securely within the family unit and does not go to any third-party organizations. A Self-Organizing Maps (SOM) based smart contract is used for anomaly detection in users’ daily activities in a smart home, which notifies emergency contact or other family members in case of anomaly detection. The approach described in this paper contributes to the development of in-house data processing for outdoor tracking, and daily activities monitoring and prediction without any third-party hardware or software. The system is implemented at a small scale with one miner, two user nodes and several device nodes, as a proof of concept;the technical feasibility is discussed along with the limitations of the system. Further research will cover the integration of the system into a smart-home environment with additional sensors and multiple users, and ethical implementations of tracking, especially of vulnerable people, via the immutability of blockchain.展开更多
Recent advances in battery energy storage technologies enable increasing number of photovoltaic-battery energy storage systems(PV-BESS)to be deployed and connected with current power grids.The reliable and efficient u...Recent advances in battery energy storage technologies enable increasing number of photovoltaic-battery energy storage systems(PV-BESS)to be deployed and connected with current power grids.The reliable and efficient utilization of BESS imposes an obvious technical challenge which needs to be urgently addressed.In this paper,the optimal operation of PV-BESS based power plant is investigated.The operational scenarios are firstly partitioned using a self-organizing map(SOM)clustering based approach.The revenue optimization model is adopted for the PV-BESS power plants to determine the optimal operational modes under typical conditions for a set of considerations,e.g.power generation revenue,assessing rewards/penalties as well as peak shaving/valley filling revenue.The solution is evaluated through a set of case studies,and the numerical result demonstrates the effectiveness of the suggested solution can optimally operate the BESS with the maximal revenue.展开更多
Solar water heating systems have been widely used around the world.However,exposure to sunlight can overheat the device,affecting the efficiency and durability of the system.This article proposes an adaptive deck cont...Solar water heating systems have been widely used around the world.However,exposure to sunlight can overheat the device,affecting the efficiency and durability of the system.This article proposes an adaptive deck controller that protects the system from overheating without compromising the availability of domestic hot water.Solar water heaters are considered one of the most effective ways to reduce a home’s carbon footprint.They are a renewable energy source that reduces reliance on fossil fuels and saves money.Thus,this paper aims to develop a dynamic cover for solar water heaters that prevent overheating using an artificial neural network to optimize the design of control systems.Based on a self-organizing map network,the controller automatically adjusts the temperature of the solar collector through a fabric screen covering the main subsystems,depending on many parameters such as weather conditions,collector temperature and domestic hot water depending on demand.A suggested technique of four different shade percentages(0%,20%,25%or 32%)can avoid overheating and maintain the amount of hot water the home needs.Although renewable energy is free,proper controls are required to ensure maximum efficiency or proper use.In addition,the control of renewable energy leads to longer service life.展开更多
Accurate delineation of urban form is essential to understand the impacts that urbanization has on the environment and regional climate.Conventional supervised classification of urban form requires a rigidly defined s...Accurate delineation of urban form is essential to understand the impacts that urbanization has on the environment and regional climate.Conventional supervised classification of urban form requires a rigidly defined scheme and high-quality sample data with class labels.Due to the complexity of urban systems,it is challenging to consistently define urban form types and collect metadata to describe them.Therefore,in this study,we propose a novel unsupervised deep learning method for urban form delineation while avoiding the limitations of conventional super-vised urban form classification methods.The novelty of the proposed method is the Multiscale Residual Convolutional Autoencoder(MRCAE),which can learn the latent representation of differ-ent urban form types.These vectors can be further used to generalize urban form types by using Self-Organizing Map(SOM)and the Gaussian Mixture Model(GMM).The proposed method is applied in the metropolitan area of Guangzhou-Foshan,China.The MRCAE model along with SOM and GMM is used to generalize the urban form types from satellite images.The physical and functional properties of each urban form type are also analyzed using several auxiliary datasets,including building footprints,Points-of-Interests(POIs)and Tencent User Density(TUD)data.The results reveal that the urban form map generated based on the MRCAE can explain 55%of the building height distribution and 55%of the building area distribution,which are 2.1%and 3.3%higher than those derived from the conventional convolutional autoencoder.As the information of urban form is essential to urban climate models,the results presented in this study can become a basis to refine the quantification of urban climate parameters,thereby introducing the urban heterogeneity to help understand the climate response of future urbanization.展开更多
Recent decades have witnessed a much increased demand for advanced,effective and efficient methods and tools for analyzing,understanding and dealing with data of increasingly complex,high dimensionality and large volu...Recent decades have witnessed a much increased demand for advanced,effective and efficient methods and tools for analyzing,understanding and dealing with data of increasingly complex,high dimensionality and large volume.Whether it is in biology,neuroscience,modern medicine and social sciences or in engineering and computer vision,data are being sampled,collected and cumulated in an unprecedented speed.It is no longer a trivial task to analyze huge amounts of high dimensional data.A systematic,automated way of interpreting data and representing them has become a great challenge facing almost all fields and research in this emerging area has flourished.Several lines of research have embarked on this timely challenge and tremendous progresses and advances have been made recently.Traditional and linear methods are being extended or enhanced in order to meet the new challenges.This paper elaborates on these recent advances and discusses various state-of-the-art algorithms proposed from statistics,geometry and adaptive neural networks.The developments mainly follow three lines:multidimensional scaling,eigen-decomposition as well as principal manifolds.Neural approaches and adaptive or incremental methods are also reviewed.In the first line,traditional multidimensional scaling(MDS)has been extended not only to be more adaptive such as neural scale,curvilinear component analysis(CCA)and visualization induced self-organizing map(ViSOM)for online learning,but also to be more local scaling such as Isomap for enhanced flexibility for nonlinear data sets.The second line extends linear principal component analysis(PCA)and has attracted a huge amount of interest and enjoyed flourishing advances with methods like kernel PCA(KPCA),locally linear embedding(LLE)and Laplacian eigenmap.The advantage is obvious:a nonlinear problem is transformed into a linear one and a unique solution can then be sought.The third line starts with the nonlinear principal curve and surface and links up with adaptive neural network approaches such as self-organizing map(SOM)and ViSOM.Many of these frameworks have been further improved and enhanced for incremental learning and mapping function generalization.This paper discusses these recent advances and their connections.Their application issues and implementation matters will also be briefly enlightened and commented on.展开更多
基金High Education Research Project Funding(No.2018C-11)Natural Science Fund of Gansu Province(Nos.18JR3RA107,1610RJYA034)Key Research and Development Program of Gansu Province(No.17YF1WA 158)。
文摘In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is proposed.Firstly,the three-phase current curve of the switch machine recorded by the micro-computer monitoring system is dealt with segmentally and then the feature parameters of the three-phase current are calculated according to the action principle of the switch machine.Due to the high dimension of initial features,the DBSCAN algorithm is used to separate the sensitive features of fault diagnosis and construct the diagnostic sensitive feature set.Then,the particle swarm optimization(PSO)algorithm is used to adjust the weight of SOM network to modify the rules to avoid“dead neurons”.Finally,the PSO-SOM network fault classifier is designed to complete the classification and diagnosis of the samples to be tested.The experimental results show that this method can judge the fault mode of switch control circuit with less training samples,and the accuracy of fault diagnosis is higher than that of traditional SOM network.
基金Natural Science Foundation of Gansu Province(No.1310RJZA061)。
文摘Radio block center(RBC)system is the core equipment of China train control system-3(CTCS-3).Now,the fault analysis of RBC system mainly depends on manual work,and the diagnostic results are inaccurate and inefficient.Therefore,the intelligent fault diagnosis method of RBC system based on one-hot model,kernel principal component analysis(KPCA)and self-organizing map(SOM)network was proposed.Firstly,the fault document matrix based on one-hot model was constructed by the fault feature lexicon selected manually and fault tracking record table.Secondly,the KPCA method was used to reduce the dimension and noise of the fault document matrix to avoid information redundancy.Finally,the processed data were input into the SOM network to train the KPCA-SOM fault classification model.Compared with back propagation(BP)neural network algorithm and SOM network algorithm,common fault patterns of train control RBC system can be effectively distinguished by KPCA-SOM intelligent diagnosis model,and the accuracy and processing efficiency are further improved.
基金supported by the National Key R&D Program of China (GrantN o.2016YFC0401407)National Natural Science Foundation of China (Grant Nos. 51479003 and 51279006)
文摘Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.
基金the National Natural Science Foundation of China (NSFC)(Nos.41976027,41976011,41730534,41476017,41576014)the Bureau of International Cooperation Chinese Academy of Sciences (No.132B61KYSB20170005)
文摘We investigated the intraseasonal variability of equatorial Pacific subsurface temperature and its relationship with El Nino-Southern Oscillation(ENSO) using Self-Organizing Maps(SOM) analysis.Variation in intraseasonal subsurface temperature is mainly found along the thermocline.The SOM patterns concentrate in basin-wide seesaw or sandwich structures along an east-west axis.Both the seesaw and sandwich SOM patterns oscillate with periods of 55 to 90 days,with the sequence of them showing features of equatorial intraseasonal Kelvin wave,and have marked interannual variations in their occurrence frequencies.Further examination shows that the interannual variability of the SOM patterns is closely related to ENSO;and maxima in composite interannual variability of the SOM patterns are located in the central Pacific during CP El Nino and in the eastern Pacific during EP El Nino.The se results imply that some of the ENSO forcing is manife sted through changes in the occurrence frequency of intraseasonal patterns,in which the change of the intraseasonal Kelvin wave plays an important role.
文摘Due to rapid development in software industry, it was necessary to reduce time and efforts in the software development process. Software Reusability is an important measure that can be applied to improve software development and software quality. Reusability reduces time, effort, errors, and hence the overall cost of the development process. Reusability prediction models are established in the early stage of the system development cycle to support an early reusability assessment. In Object-Oriented systems, Reusability of software components (classes) can be obtained by investigating its metrics values. Analyzing software metric values can help to avoid developing components from scratch. In this paper, we use Chidamber and Kemerer (CK) metrics suite in order to identify the reuse level of object-oriented classes. Self-Organizing Map (SOM) was used to cluster datasets of CK metrics values that were extracted from three different java-based systems. The goal was to find the relationship between CK metrics values and the reusability level of the class. The reusability level of the class was classified into three main categorizes (High Reusable, Medium Reusable and Low Reusable). The clustering was based on metrics threshold values that were used to achieve the experiments. The proposed methodology succeeds in classifying classes to their reusability level (High Reusable, Medium Reusable and Low Reusable). The experiments show how SOM can be applied on software CK metrics with different sizes of SOM grids to provide different levels of metrics details. The results show that Depth of Inheritance Tree (DIT) and Number of Children (NOC) metrics dominated the clustering process, so these two metrics were discarded from the experiments to achieve a successful clustering. The most efficient SOM topology [2 × 2] grid size is used to predict the reusability of classes.
基金The National Natural Science Foundation of China(No.71641005)the National Key Research and Development Program of China(No.2018YFB1601105)
文摘Based on the driver surveillance video data and controller area network(CAN)data,the methods of studying commercial vehicles’driving behavior is relatively advanced.However,these methods have difficulty in covering private vehicles.Naturalistic driving studies have disadvantages of small sample size and high cost,one new driving behavior evaluation method using massive vehicle trajectory data is put forward.An automatic encoding machine is used to reduce the noise of raw data,and then driving dynamics and self-organizing mapping(SOM)classification are used to give thresholds or the judgement method of overspeed,rapid speed change,rapid turning and rapid lane changing.The proportion of different driving behaviors and typical dangerous driving behaviors is calculated,then the temporal and spatial distribution of drivers’driving behavior and the driving behavior characteristics on typical roads are analyzed.Driving behaviors on accident-prone road sections and normal road sections are compared.Results show that in Shenzhen,frequent lane changing and overspeed are the most common unsafe driving behaviors;16.1%drivers have relatively aggressive driving behavior;the proportion of dangerous driving behavior is higher outside the original economic special zone;dangerous driving behavior is highly correlated with traffic accident frequency.
文摘Varieties of approaches and algorithms have been presented to identify the distribution of elements. Previous researches based on the type of problem, categorized their data in proper clusters or classes. This means that the process of solution could be supervised or unsupervised. In cases, where there is no idea about dependency of samples to specific groups, clustering methods (unsupervised) are applied. About geochemistry data, since various elements are involved, in addition to the complex nature of geochemical data, clustering algorithms would be useful for recognition of elements distribution. In this paper, Self-Organizing Map (SOM) algorithm, as an unsupervised method, is applied for clustering samples based on REEs contents. For this reason the Choghart Fe-REE deposit (Bafq district, central Iran), was selected as study area and dataset was a collection of 112 lithology samples that were assayed with laboratory tests such as ICP-MS and XRF analysis. In this study, input vectors include 19 features which are coordinates x, y, z and concentrations of REEs as well as the concentration of Phosphate (P<sub>2</sub>O<sub>5</sub>) since the apatite is the main source of REEs in this particular research. Four clusters were determined as an optimal number of clusters using silhouette criterion as well as k-means clustering method and SOM. Therefore, using self-organizing map, study area was subdivided in four zones. These four zones can be described as phosphate type, albitofyre type, metasomatic and phosphorus iron ore, and Iron Ore type. Phosphate type is the most prone to rare earth elements. Eventually, results were validated with laboratory analysis.
文摘This paper reports distinct spatio-spectral properties of Zen-meditation EEG (electroencephalograph), compared with resting EEG, by implementing unsupervised machine learning scheme in clustering the brain mappings of centroid frequency (BMFc). Zen practitioners simultaneously concentrate on the third ventricle, hypothalamus and corpora quadrigemina touniversalize all brain neurons to construct a <i>detached</i> brain and gradually change the normal brain traits, leading to the process of brain-neuroplasticity. During such tri-aperture concentration, EEG exhibits prominent diffuse high-frequency oscillations. Unsupervised self-organizing map (SOM), clusters the dataset of quantitative EEG by matching the input feature vector Fc and the output cluster center through the SOM network weights. Input dataset contains brain mappings of 30 centroid frequencies extracted from CWT (continuous wavelet transform) coefficients. According to SOM clustering results, resting EEG is dominated by global low-frequency (<14 Hz) activities, except channels T7, F7 and TP7 (>14.4 Hz);whereas Zen-meditation EEG exhibits globally high-frequency (>16 Hz) activities throughout the entire record. Beta waves with a wide range of frequencies are often associated with active concentration. Nonetheless, clinic report discloses that benzodiazepines, medication treatment for anxiety, insomnia and panic attacks to relieve mind/body stress, often induce <i>beta buzz</i>. We may hypothesize that Zen-meditation practitioners attain the unique state of mindfulness concentration under optimal body-mind relaxation.
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.
基金This research was supported by School of ICT,University of Tasmania,Sandy BayWe thank the anonymous reviewers whose comments/suggestions helped improve the quality of this manuscript.
文摘With advancements in technology, personal computing devices are better adapted for and further integrated into people’s lives and homes. The integration of technology into society also results in an increasing desire to control who and what has access to sensitive information, especially for vulnerable people including children and the elderly. With blockchain rise as a technology that can revolutionize the world, it is now possible to have an immutable audit trail of locational data over time. By controlling the process through inexpensive equipment in the home, it is possible to control whom has access to such personal data. This paper presents a block-chain based family security system for outdoor tracking and in-house monitoring of users’ activities via sensors to detect anomalies in users’ daily activities with the integration of Artificial Intelligence (AI). For outdoor tracking the locations of the consenting family members’ smart phones are logged and stored in a private blockchain which can be accessed through a node installed in the family home on a computer. The data for the whereabouts and daily activities of family members stays securely within the family unit and does not go to any third-party organizations. A Self-Organizing Maps (SOM) based smart contract is used for anomaly detection in users’ daily activities in a smart home, which notifies emergency contact or other family members in case of anomaly detection. The approach described in this paper contributes to the development of in-house data processing for outdoor tracking, and daily activities monitoring and prediction without any third-party hardware or software. The system is implemented at a small scale with one miner, two user nodes and several device nodes, as a proof of concept;the technical feasibility is discussed along with the limitations of the system. Further research will cover the integration of the system into a smart-home environment with additional sensors and multiple users, and ethical implementations of tracking, especially of vulnerable people, via the immutability of blockchain.
文摘Recent advances in battery energy storage technologies enable increasing number of photovoltaic-battery energy storage systems(PV-BESS)to be deployed and connected with current power grids.The reliable and efficient utilization of BESS imposes an obvious technical challenge which needs to be urgently addressed.In this paper,the optimal operation of PV-BESS based power plant is investigated.The operational scenarios are firstly partitioned using a self-organizing map(SOM)clustering based approach.The revenue optimization model is adopted for the PV-BESS power plants to determine the optimal operational modes under typical conditions for a set of considerations,e.g.power generation revenue,assessing rewards/penalties as well as peak shaving/valley filling revenue.The solution is evaluated through a set of case studies,and the numerical result demonstrates the effectiveness of the suggested solution can optimally operate the BESS with the maximal revenue.
基金The authors would like to thank the Higher Center for Research(HCR)of the Holy Spirit University of Kaslik(USEK)the National Council for Scientific Research in Lebanon(CNRS-L)for funding this project。
文摘Solar water heating systems have been widely used around the world.However,exposure to sunlight can overheat the device,affecting the efficiency and durability of the system.This article proposes an adaptive deck controller that protects the system from overheating without compromising the availability of domestic hot water.Solar water heaters are considered one of the most effective ways to reduce a home’s carbon footprint.They are a renewable energy source that reduces reliance on fossil fuels and saves money.Thus,this paper aims to develop a dynamic cover for solar water heaters that prevent overheating using an artificial neural network to optimize the design of control systems.Based on a self-organizing map network,the controller automatically adjusts the temperature of the solar collector through a fabric screen covering the main subsystems,depending on many parameters such as weather conditions,collector temperature and domestic hot water depending on demand.A suggested technique of four different shade percentages(0%,20%,25%or 32%)can avoid overheating and maintain the amount of hot water the home needs.Although renewable energy is free,proper controls are required to ensure maximum efficiency or proper use.In addition,the control of renewable energy leads to longer service life.
基金supported by the National Key R&D Program of China[grant number 2019YFA0607201 and 2017YFA0604401]the National Natural Science Foundation of China[grant number 41871306]+1 种基金the Guangdong Natural Science Funds for Distinguished Young Scholar[grant number 2021B1515020104]the Fundamental Research Funds for the Central Universities[grant number 20lgzd09].
文摘Accurate delineation of urban form is essential to understand the impacts that urbanization has on the environment and regional climate.Conventional supervised classification of urban form requires a rigidly defined scheme and high-quality sample data with class labels.Due to the complexity of urban systems,it is challenging to consistently define urban form types and collect metadata to describe them.Therefore,in this study,we propose a novel unsupervised deep learning method for urban form delineation while avoiding the limitations of conventional super-vised urban form classification methods.The novelty of the proposed method is the Multiscale Residual Convolutional Autoencoder(MRCAE),which can learn the latent representation of differ-ent urban form types.These vectors can be further used to generalize urban form types by using Self-Organizing Map(SOM)and the Gaussian Mixture Model(GMM).The proposed method is applied in the metropolitan area of Guangzhou-Foshan,China.The MRCAE model along with SOM and GMM is used to generalize the urban form types from satellite images.The physical and functional properties of each urban form type are also analyzed using several auxiliary datasets,including building footprints,Points-of-Interests(POIs)and Tencent User Density(TUD)data.The results reveal that the urban form map generated based on the MRCAE can explain 55%of the building height distribution and 55%of the building area distribution,which are 2.1%and 3.3%higher than those derived from the conventional convolutional autoencoder.As the information of urban form is essential to urban climate models,the results presented in this study can become a basis to refine the quantification of urban climate parameters,thereby introducing the urban heterogeneity to help understand the climate response of future urbanization.
文摘Recent decades have witnessed a much increased demand for advanced,effective and efficient methods and tools for analyzing,understanding and dealing with data of increasingly complex,high dimensionality and large volume.Whether it is in biology,neuroscience,modern medicine and social sciences or in engineering and computer vision,data are being sampled,collected and cumulated in an unprecedented speed.It is no longer a trivial task to analyze huge amounts of high dimensional data.A systematic,automated way of interpreting data and representing them has become a great challenge facing almost all fields and research in this emerging area has flourished.Several lines of research have embarked on this timely challenge and tremendous progresses and advances have been made recently.Traditional and linear methods are being extended or enhanced in order to meet the new challenges.This paper elaborates on these recent advances and discusses various state-of-the-art algorithms proposed from statistics,geometry and adaptive neural networks.The developments mainly follow three lines:multidimensional scaling,eigen-decomposition as well as principal manifolds.Neural approaches and adaptive or incremental methods are also reviewed.In the first line,traditional multidimensional scaling(MDS)has been extended not only to be more adaptive such as neural scale,curvilinear component analysis(CCA)and visualization induced self-organizing map(ViSOM)for online learning,but also to be more local scaling such as Isomap for enhanced flexibility for nonlinear data sets.The second line extends linear principal component analysis(PCA)and has attracted a huge amount of interest and enjoyed flourishing advances with methods like kernel PCA(KPCA),locally linear embedding(LLE)and Laplacian eigenmap.The advantage is obvious:a nonlinear problem is transformed into a linear one and a unique solution can then be sought.The third line starts with the nonlinear principal curve and surface and links up with adaptive neural network approaches such as self-organizing map(SOM)and ViSOM.Many of these frameworks have been further improved and enhanced for incremental learning and mapping function generalization.This paper discusses these recent advances and their connections.Their application issues and implementation matters will also be briefly enlightened and commented on.