Inorganic carbon forms and their influencing factors, mutual transformation and contribution to carbon cycling in the Jiaozhou Bay sediments were discussed. The results show that inorganic carbon in sediments could be...Inorganic carbon forms and their influencing factors, mutual transformation and contribution to carbon cycling in the Jiaozhou Bay sediments were discussed. The results show that inorganic carbon in sediments could be divided into five forms: NaCl form, NH3-H20 form, NaOH form, NH20H-HCl form and HCI form. Thereinto, NH2OH.HCl form and HCl form account for more than 70% of total inorganic carbon. There was close relationship among every form of inorganic carbon and their correlativity was clearly different with different sedimentary environment except the similar strong positive correlation among NH-OH-HCl form, HCl form and total inorganic carbon in all regions of the Jiaozhou Bay. All forms of inorganic carbon were influenced by organic carbon, pH, Eh, Es, nitrogen and phosphorus in sediments, but their influence had different characteristics in different regions. Every form of inorganic carbon transformed into each other continuously during early diagenesis of sediments and the common phenomenon was that NaCl form, NH3-H2O form, NaOH form and NH2OH-HCl form might transform into steady HCl form. NaCl form, NH3-H2O form, NaOH form and NH2OH-HCl form could participate in carbon recycle and they are potential carbon source; HCl form may be buried for a long time in sediments, and it may be one of the final resting places of atmospheric C02. Inorganic carbon which entered into sediments was about 4.98× 1010 g in the Jiaozhou Bay every year, in which about 1.47×1010 g of inorganic carbon might be buried for a long time and about 3.51 × 1010 g of inorganic carbon might return into seawater and take part in carbon recycling.展开更多
Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability o...Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability of harvesting light energy and wide distribution, and appear to have a particular role in the ocean's carbon cycling. Yet the global pattern of AAPB distribution was controversial at the beginning of the 21 st century due to the defects of the AAPB enumeration methods. An advanced time-series observation-based infrared epifluorescence microscopy(TIREM) approach was established to amend the existing AAPB quantitative deviation and led to the accurate enumeration of AAPB in marine environments. The abundance of AAPB and AAPB% were higher in coastal and continental shelf waters than in oceanic waters, which does not support the idea that AAPB are specifically adapted to oligotrophic conditions due to photosynthesis in AAPB acting a supplement to their organic carbon respiration. Further investigation revealed that dependence of AAPB on dissolved organic carbon produced by phytoplankton(PDOC) may limit their competition and control AAPB distribution. So, the selection of carbon sources by AAPB indicated that they can effectively fractionate the carbon flow in the sea. Enlightened by these findings, the following studies on the interactions between marine microbes and DOC led to the discovery of a new mechanism of marine carbon sequestration—the Microbial Carbon Pump(MCP). The conceptual framework of MCP addresses the sources and mechanism of the vast DOC reservoir in the ocean and represents a breakthrough in the theory of ocean carbon sequestration.展开更多
基金The opening foundation of the Key Laboratory of Marine Sedimentology & Environmental Geology,SOA under contract No. MASEG200606Creative Research Groups by NSFC under contract No.40821004+1 种基金the National Key Project for Basic Research of China under contract No. 2007CB407305the "100 Talents Project" of the Chinese Academy of Sciences
文摘Inorganic carbon forms and their influencing factors, mutual transformation and contribution to carbon cycling in the Jiaozhou Bay sediments were discussed. The results show that inorganic carbon in sediments could be divided into five forms: NaCl form, NH3-H20 form, NaOH form, NH20H-HCl form and HCI form. Thereinto, NH2OH.HCl form and HCl form account for more than 70% of total inorganic carbon. There was close relationship among every form of inorganic carbon and their correlativity was clearly different with different sedimentary environment except the similar strong positive correlation among NH-OH-HCl form, HCl form and total inorganic carbon in all regions of the Jiaozhou Bay. All forms of inorganic carbon were influenced by organic carbon, pH, Eh, Es, nitrogen and phosphorus in sediments, but their influence had different characteristics in different regions. Every form of inorganic carbon transformed into each other continuously during early diagenesis of sediments and the common phenomenon was that NaCl form, NH3-H2O form, NaOH form and NH2OH-HCl form might transform into steady HCl form. NaCl form, NH3-H2O form, NaOH form and NH2OH-HCl form could participate in carbon recycle and they are potential carbon source; HCl form may be buried for a long time in sediments, and it may be one of the final resting places of atmospheric C02. Inorganic carbon which entered into sediments was about 4.98× 1010 g in the Jiaozhou Bay every year, in which about 1.47×1010 g of inorganic carbon might be buried for a long time and about 3.51 × 1010 g of inorganic carbon might return into seawater and take part in carbon recycling.
基金Ministry of Science and Technology of the People’s Republic of China Project (Grant No. 2011IM010700)the National Natural Science Foundation of China (Grant Nos. 91428308, 41422603 and 41176095)the State Oceanic Administration of China Project (Grant No. GASI-03-01-02-03)
文摘Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability of harvesting light energy and wide distribution, and appear to have a particular role in the ocean's carbon cycling. Yet the global pattern of AAPB distribution was controversial at the beginning of the 21 st century due to the defects of the AAPB enumeration methods. An advanced time-series observation-based infrared epifluorescence microscopy(TIREM) approach was established to amend the existing AAPB quantitative deviation and led to the accurate enumeration of AAPB in marine environments. The abundance of AAPB and AAPB% were higher in coastal and continental shelf waters than in oceanic waters, which does not support the idea that AAPB are specifically adapted to oligotrophic conditions due to photosynthesis in AAPB acting a supplement to their organic carbon respiration. Further investigation revealed that dependence of AAPB on dissolved organic carbon produced by phytoplankton(PDOC) may limit their competition and control AAPB distribution. So, the selection of carbon sources by AAPB indicated that they can effectively fractionate the carbon flow in the sea. Enlightened by these findings, the following studies on the interactions between marine microbes and DOC led to the discovery of a new mechanism of marine carbon sequestration—the Microbial Carbon Pump(MCP). The conceptual framework of MCP addresses the sources and mechanism of the vast DOC reservoir in the ocean and represents a breakthrough in the theory of ocean carbon sequestration.