Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d...Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.展开更多
238 marine carbonate samples were collected from seven sedimentary sections ofthe entire late Palaeozoic (Permian, Carboniferous and Devonian) in the Upper Yangtze Plat-form, southwest China. Based on the absence of c...238 marine carbonate samples were collected from seven sedimentary sections ofthe entire late Palaeozoic (Permian, Carboniferous and Devonian) in the Upper Yangtze Plat-form, southwest China. Based on the absence of cathodoluminescence and very low Mn (gener-ally<50 ppm) contents of the samples, it is thought that they contain information on the orig-inal sea water geochemistry. The results of isotopic analyses of these samples are presented interms of δ^(13)C and ^(87)Sr/^(86)Sr ratios versus geological time. The strontium data, consistent withother similar data based on samples from North America, Europe, Africa and other areas inAsia, support the notion of a global consistency in strontium isotope composition of marinecarbonates. The strontium data exhibit three intervals of relatively low ^(87)Sr/^(86)Sr ratios in thelate Middle Devonian to early Late Devonian, Early Carboniferous and Early Permian, corre-sponding to global eustatic high sea level stands. The lowest ^(87)Sr/^(86)Sr ratio recorded in theLate Permian was probably caused by substantial basalt eruptions in the Upper Yangtze Plat-form at the time. Three corresponding periods of relatively high δ^(13)C values at roughly the samethe intervals were caused by a relatively high rate of accumulation of organic carbon duringsea level rises at these times. The deposition of coal was probably responsible for the increaseof sea water δ^(13)C at other times. The δ^(13)C values drop dramatically near theDevonian/Carboniferous, Carboniferous/Permian and Permian/Triassic boundaries, con-sistent with other similar data, which further support the notion that geological time boundariesare associated with mass extinction and subsequent rejuvenation.展开更多
A series of significant discoveries in marine carbonate rocks show great petroleum exploration potential in the Tarim Basin. However, the oil and gas fields discovered in the carbonate rocks are mainly distributed aro...A series of significant discoveries in marine carbonate rocks show great petroleum exploration potential in the Tarim Basin. However, the oil and gas fields discovered in the carbonate rocks are mainly distributed around the Manjiaer Sag in the eastern Tarim Basin. Some explorations occurred and no oil or gas field was discovered around the Awati Sag in the western Tarim Basin. Information from wells and outcrops reveals that there are excellent oil and gas source rock conditions around the Awati Sag. Transformed reef-shoal reservoirs could be formed in the Ordovician carbonate rocks with paleo-geographic background and hydrothermal conditions. Therefore, it is necessary to make a systematical study and overall evaluation of the potential of the periphery of the Awati Sag in terms of source rock evolution, resource potential, high-grade reservoir formation and distribution, and main factors controlling hydrocarbon migration and accumulation.展开更多
^87Sr/^86Sr, δ^18O and δ^13C ratios of calcite, dolomite, gypsum filling vugs and fissures in marine carbonates and their host rocks from the Sinian to the middle Triassic, are employed to trace the possible source ...^87Sr/^86Sr, δ^18O and δ^13C ratios of calcite, dolomite, gypsum filling vugs and fissures in marine carbonates and their host rocks from the Sinian to the middle Triassic, are employed to trace the possible source and migration path of key fluids related to development of hydrocarbon, hydrocarbon preservation condition are then discussed further. Comprehensive research, based on the paleo-fluid, the property of formation water and the deformation intensity etc., indicates that the preservation conditions in the Shizhu synclinorium zone and Fangdoushan anticlinorium zone are the most predominant in the central Yangtze. Three sets of fluid systems in the Shizhu synclinorium zone are identified. Little fluid exchange occurs between the upper-middle fluid system and the lower fluid system, so two independent preservation units have developed. Both the Permian and the Triassic in the upper preservation units and the Dengying Formation of the Sinian and the lower Cambrian in the lower preservation units have good preservation conditions. The preservation condition in the lower association (Z-S) located in the Huaguoping synclinorium zone in the western Hubei and Hunan is better than that in other tectonic units, where the fluids in the lower association migrated vertically across strata when the fluid isolating intervals were destroyed, the regional seals are absent and the conditions for the preservation of hydrocarbon accumulations are totally destroyed. The preservation condition is increasingly more favorable from the western Jiangxi and Hunan to the western Hubei & eastern Chongqing on the whole.展开更多
Based on the technology of balanced cross-section and physical simulation experiments associated with natural gas geochemical characteristic analyses, core and thin section observations, it has been proven that the Pu...Based on the technology of balanced cross-section and physical simulation experiments associated with natural gas geochemical characteristic analyses, core and thin section observations, it has been proven that the Puguang gas reservoir has experienced two periods of diagenesis and restructuring since the Late Indo-Chinese epoch. One is the fluid transfer controlled by the tectonic movement and the other is geochemical reconstruction controlled by thermochemical sulfate reduction (TSR). The middle Yanshan epoch was the main period that the Puguang gas reservoir experienced the geochemical reaction of TSR. TSR can recreate the fluid in the gas reservoir, which makes the gas drying index higher and carbon isotope heavier because C2+ (ethane and heavy hydrocarbon) and 12C (carbon 12 isotope) is first consumed relative to CH4 and 13C (carbon 13 isotope). However, the reciprocity between fluid regarding TSR (hydrocarbon, sulfureted hydrogen (H2S), and water) and reservoir rock results in reservoir rock erosion and anhydrite alteration, which increases porosity in reservoir, thereby improving the petrophysical properties. Superimposed by later tectonic movement, the fluid in Puguang reservoir has twice experienced adjustment, one in the late Yanshan epoch to the early Himalayan epoch and the other time in late Himalayan epoch, after which Puguang gas reservoir is finally developed.展开更多
It has always been challenging to determine the ancient sedimentary environment and associated energy in deep-buried marine carbonates.The energy represents the hydrodynamic conditions that existed when the carbonates...It has always been challenging to determine the ancient sedimentary environment and associated energy in deep-buried marine carbonates.The energy represents the hydrodynamic conditions that existed when the carbonates were deposited.The energy includes light and chemical energies in compounds and kinetic energy in currents and mass flow.Deep-buried marine carbonates deposited during the Ordovician depositional period in the eastern Tarim Basin result from a complex interplay of tectonics,sedimentation,and diagenesis.As a result,determining the ancient sedimentary environment and associated energy is complex.The natural gamma-ray spectrometry(GRS)log(from 12 wells)is used in this paper to conduct studies on the sedimentary environment and associated energy in deep-buried marine carbonates.The findings show that the values of thorium(Th),uranium(U),potassium(K),and gamma-ray without uranium(KTh)in a natural GRS log can reveal lithological associations,mineral composition,diagenetic environment,stratigraphic water activity,and ancient climatic change.During the Ordovician,quantitative analysis and determination of sedimentary environment energy are carried out using a comprehensive calculation of natural GRS log parameters in typical wells(penetrating through the Ordovician with cores and thin sections)of well GC4,well GC6,well GC7,and well GC8.The results show that GRS log can determine different lithology associations in typical wells than a sieve residue log.Furthermore,cores and thin sections can be used to validate the determination of lithology associations.Based on the determination of lithology associations,the lithology associations that reflect the sedimentary environment and associated energy can be analyzed in a new approach.Furthermore,the sedimentary environment energy curve derived from a natural GRS log can reveal hydrodynamic fluctuations during depositional periods,which will aid in the discovery of carbonate reservoirs,establishing sequence stratigraphic frameworks,and the reconstruction of sea-level changes in the future.展开更多
Advances in studies of formation and accumulation mechanisms of oil and gas in marine carbonate sequences have led to continuing breakthroughs of petroleum exploration in marine carbonate sequences in Chinese sediment...Advances in studies of formation and accumulation mechanisms of oil and gas in marine carbonate sequences have led to continuing breakthroughs of petroleum exploration in marine carbonate sequences in Chinese sedimentary basins in recent years. The recently discovered giant Tahe Oil Field and Puguang Gas Field have provided geological entities for further studies of the formation and accumulation of oil and gas in marine carbonate sequences. Marine carbonate sequences in China are characterized by old age, multiple structural deformation, differential thermal evolution of source rocks, various reservoir types (i.e. reef-bank complex and paleo-weathered crust karst reservoir), uneven development of caprocks, especially gypsum seal, and multi-episodes of hydrocarbon accumulation and readjustment. As a result, the formation of hydrocarbon accumulations in the Chinese marine carbonate sequences has the following features: (i) the high-quality marine source rocks of shale and calcareous mudstone are often associated with siliceous rocks or calcareous rocks and were deposited in slope environments. They are rich in organic matter, have a higher hydrocarbon generation potential, but experienced variable thermal evolutions in different basins or different areas of the same basin. (ii) High quality reservoirs are controlled by both primary depositional environments and later modifications including diagenetic modifications, structural deformations, and fluid effects. (iii) Development of high-quality caprocks, especially gypsum seals, is the key to the formation of large-and medium-sized oil and gas fields in marine carbonate sequences. Gypsum often constitutes the caprock for most of large sized gas fields. Given that Chinese marine carbonate sequences are of old age and subject to multiple episodes of structural deformation and superposition, oil and gas tend to accumulate in the slopes and structural hinge zones, since the slopes favor the development of effective assemblage of source-reservoir-caprock, high quality source rocks, good reservoirs such as reef-bank complex, and various caprocks. As the structural hinge zones lay in the focus area of petroleum migration and experienced little structural deformation, they are also favorable places for hydrocarbon accumulation and preservation.展开更多
The Lopingian is one of the fastest rising periods of seawater strontium isotopic ratios (^87Sr/^86Sr) in earth history, and its mechanisms and increasing rates of the ^87Sr/^86Sr evolution were still disputed widel...The Lopingian is one of the fastest rising periods of seawater strontium isotopic ratios (^87Sr/^86Sr) in earth history, and its mechanisms and increasing rates of the ^87Sr/^86Sr evolution were still disputed widely. These disputations among researchers were caused mainly by timeframe selection (sections' thickness or data of radiometric ages), and different stratigraphic boundaries and un-upmost dated ages. This paper examined published ^87Sr/^86Sr data of the Lopingian, and projected them on timescales based on evolutionary and age constrained conodonts fossils. ^87Sr/^86Sr evolution vs fossil constraining timescales was re-established in this period. This research suggests: (1) ^87Sr/^86Sr excursion projects on fossil zones can truly support ^87Sr/^86Sr evolutionary pattern in the period; (2) ^87Sr/^86Sr evolution provides a new approach for stratigraphic research of marine carbonate sections in lieu of biostratigraphic data; (3) ^87Sr/^86Sr stratigraphy works on marine carbonate sections of different sedimentation rates even between different basins; (4) the ^875r/^86Sr data and its shift was dependent on samples materials and chemical treatment methods; (5) the increasing rate of marine water ^875r/^86Sr in the Late Permian is suggested as 5.4× 10^-5/Ma or slightly lower; (6) sedimentation age and its ^875r/^86Sr of the Lopingian marine carbonate suggested as: Dpro=259-(Rs- 0.70695)/5.4×10^-5 (Ma).展开更多
There are rich oil and gas resources in marine carbonate strata worldwide.Although most of the oil and gas reserves discovered so far are mainly distributed in Mesozoic,Cenozoic,and upper Paleozoic strata,oil and gas ...There are rich oil and gas resources in marine carbonate strata worldwide.Although most of the oil and gas reserves discovered so far are mainly distributed in Mesozoic,Cenozoic,and upper Paleozoic strata,oil and gas exploration in the Proterozoic–Lower Paleozoic(PLP)strata—the oldest marine strata—has been very limited.To more clearly understand the oil and gas formation conditions and distributions in the PLP marine carbonate strata,we analyzed and characterized the petroleum geological conditions,oil and gas reservoir types,and their distributions in thirteen giant oil and gas fields worldwide.This study reveals the main factors controlling their formation and distribution.Our analyses show that the source rocks for these giant oil and gas fields are mainly shale with a great abundance of type I–II organic matter and a high thermal evolution extent.The reservoirs are mainly gas reservoirs,and the reservoir rocks are dominated by dolomite.The reservoir types are mainly karst and reef–shoal bodies with well-developed dissolved pores and cavities,intercrystalline pores,and fractures.These reservoirs arehighly heterogeneous.The burial depth of the reservoirs is highly variable and somewhat negatively correlated to the porosity.The cap rocks are mainly thick evaporites and shales,with the thickness of the cap rocks positively correlated to the oil and gas reserves.The development of high-quality evaporite cap rock is highly favorable for oil and gas preservation.We identified four hydrocarbon generation models,and that the major source rocks have undergone a long period of burial and thermal evolution and are characterized by early and long periods of hydrocarbon generation.These giant oil and gas fields have diverse types of reservoirs and are mainly distributed in paleo-uplifts,slope zones,and platform margin reef-shoal bodies.The main factors that control their formation and distribution were identified,enabling the prediction of new favorable areas for oil and gas exploration.展开更多
The Lomagundi(-Jatuli)event,characterized by extremely high positive global inorganic carbon isotope excursion at about 2.2 billion years ago,is pivotal in investigating the causes and consequences of great oxygenatio...The Lomagundi(-Jatuli)event,characterized by extremely high positive global inorganic carbon isotope excursion at about 2.2 billion years ago,is pivotal in investigating the causes and consequences of great oxygenation event,inventory and sequestration of carbon on the Earth’s surface,evolution of life,and more profoundly tectonic control on Earth’s environment.However,the reasons that caused the isotopic excursion are not resolved yet.Herein,we report the discovery of meta-carbonate rocks with distinct positive carbon isotopic excursion from the Paleoproterozoic continental collision zone of the Kongling Complex,South China Craton.The δ^(13)C_(V-PDB) values for meta-carbonate rocks show positive values in the range from+5.5‰to+11.6‰,whereas the δ^(13)C_(V-PDB) values of associated graphite deposits range from-25.8‰to-9.5‰.Zircon U-Pb-Hf isotopes from zircon-bearing meta-carbonate sample yielded weighted average _(207)Pb/_(206)Pb age of 2001.3±9.5 Ma,with correspondingε_(Hf)(t)range from-7.05 to-3.16,comparable to the values of local 2.9–2.6 Ga basement rocks.Geochemical characteristics of meta-carbonate rocks,such as their rare earth element patterns and the trace element parameters of La,Ce,Eu,and Gd anomalies and Y/Ho ratio,suggest that the carbonate deposition took place in passive continental margin in association with large volumes of organic carbon.The extensive graphite deposits from Kongling Complex in South China Craton,their equivalents in the North China Craton and elsewhere across the globe prove that the burial of ^(12)C-enriched organic carbon has eventually resulted in the global enrichment of ^(13)C in the atmospheric CO_(2),which is recorded in the marine carbonate rocks.Isotopic mass balance estimates indicate that more than half of the organic carbon was buried during the oceanic closure.Hence,the observed global shift could be directly related to the continent collision event in greater China,thus resolving the long-standing paradox of the Lomagundi global positive carbon isotope excursion.Moreover,the present results suggest that orogenesis play a significant role in sequestration of carbon into the continental crust.展开更多
The study investigates the potential of the serpulid tubeworm Ficopomatus sp.,sourced from Jesolo Lido(Venice,Italy),for CCS(Carbon Capture and Storage).Specimens were processed to extract bioactive compounds using a ...The study investigates the potential of the serpulid tubeworm Ficopomatus sp.,sourced from Jesolo Lido(Venice,Italy),for CCS(Carbon Capture and Storage).Specimens were processed to extract bioactive compounds using a 50%polypropylene glycol-water solvent system.Extracts were analysed and purified using column gel filtration chromatography,with fractions identified by TLC(Thin Layer Chromatography)and further characterized for antioxidant and antibacterial activities.Antioxidant activity was detected via DPPH(2,2-Diphenyl-1-Picrylhydrazyl)spraying on TLC plates,while antibacterial activity was evaluated using the antibiogram paper disk diffusion method.Enzyme activity in the fractions was previously confirmed through a bromothymol blue test followed by spectrophotometric analysis.The primary goal was to explore the CCS potential,using an experimental module involving Arduino Uno embedded microprocessor for the CO_(2) measurement and to confirm the conversion into insoluble carbonates(storage).The most active fraction,identified as S1,showed significant CCS action,confirmed by microscopic observation of calcareous deposits on treated sponges.These findings suggest that Ficopomatus sp.can be used in CCS research highlighting its potential for biotechnological applications in mitigating climate change.The paper underscores the importance of marine organisms in CCS and offers insights into innovative strategies for environmental conservation and carbon management.展开更多
To characterize environmental factors controlling decadal-scale variations in the buried flux of marine organic carbon(BFC_(m))in the eastern shelf sea areas of China(ECSS),four well preserved sediment cores collected...To characterize environmental factors controlling decadal-scale variations in the buried flux of marine organic carbon(BFC_(m))in the eastern shelf sea areas of China(ECSS),four well preserved sediment cores collected from the central Yellow Sea mud(CYSM)area,the Yellow Sea Coastal Current(YSCC)area and the Changjiang River Estuary(CRE)were investigated in this study.In the CYSM,variations in BFC_(m) were found to be dependent on variations in primary productivity and to exhibit a cyclical trend possibly related to fluctuations in the Pacific Decadal Oscillation(PDO)and the East Asian winter monsoon index(EAWM).In the YSCC,BFC_(m) likewise depends on primary productivity.Prior to the 1950s,variations in BFC_(m) were similar to that of the EAWM.After the 1950s,BFC_(m) increased rapidly and exhibited maximum values in the surface layer,consistent with an increase in primary productivity caused by the input of terrestrial nutrients associated with China’s economic development.In the CRE,variations in BFC_(m) were affected by several competing factors making it difficult to identify clear relationships between variations in BFC_(m) and primary productivity.In contrast,long-term variability in BFC_(m) is more similar to changes in the Changjiang River sediment load.Thus,it is speculated that the construction of dams along the Changjiang River may be the main cause of variations in BFC_(m) in this area.Given the disproportionate effects of human activities on marine environments and decadal variations in BFC_(m) in the ECSS,careful attention should be paid to regional differences in organic carbon preservation and environmental changes lest estimates of these values be made imprecise or inaccurate.展开更多
The Great Oxidation Event(GOE)during the early Paleoproterozoic represents the first significant buildup in Earth’s atmospheric oxygen and resulted in a series of significant changes in the Earth’s surface environme...The Great Oxidation Event(GOE)during the early Paleoproterozoic represents the first significant buildup in Earth’s atmospheric oxygen and resulted in a series of significant changes in the Earth’s surface environment.Among them is the 2.22(or 2.33)–2.06 Ga Lomagundi-Jatuli Event(LJE),which is globally,the largest magnitude and longest duration,marine carbonate positive carbon isotope excursion(δ^(13)C_(V-PDB)>10‰)known.This event has attracted the attention of scholars all over the world.However,except for a high positive carbon isotope excursion(δ^(13)C_(V-PDB)>10‰)recently identified from marine carbonate rocks within the Daposhan Formation in the lower Fanhe Group(or the Sanchazi Group)in the Longgang Block in the northeast North China Craton(NCC),Paleoproterozoic carbonates in the NCC are characterized by a low-amplitude positive carbon isotope excursion(δ^(13)C_(V-PDB)<5‰).This feature is significantly different from the high positive carbon isotope excursion characteristics of carbonates deposited during the LJE period in other cratons.To determine whether there are large-scale and reliable sedimentary records of the LJE in the NCC and the reasons for the low positive δ^(13)C excursion of the Paleoproterozoic carbonates obtained by the previous studies,we conducted field investigations,carbon-oxygen isotopes,and whole-rock major and trace element geochemical analyses of Liaohe Group carbonate rocks from the Anshan area in the northwestern margin of the Jiao-Liao-Ji Belt in the northeast NCC.Our results show that the Gaojiayu Formation of the Liaohe Group in the Anshan area has high positive δ^(13)C_(V-PDB) values from 8.6‰ to 12.4‰ and δ^(18)O_(V-SMOW) values of 17.9‰-27.4‰(δ^(18)O_(V-PDB) values ranging from−12.6‰to -3.4‰).This provides solid evidence for the preservation of reliable sedimentary records of the LJE in the northeastern NCC.Deposition of the high positive δ^(13)C excursion(>10‰)of marine carbonate rocks occurred at about 2.15 Ga.Lithological comparisons of different sections and whole-rock geochemical results show that the high positive δ^(13)C excursion is mainly controlled by the stratigraphic interval and depositional ages;the changes of sedimentary facies and diagenesis have no significant effects on reducing of the δ^(13)C values.The intrusion of mafic sills into carbonates has resulted in synchronous decrease of C-O isotopes near the contact zones,but the decreasing amplitude of δ^(13)C is less than 3‰.Therefore,our study firstly identified marine carbonates with high positive δ^(13)C excursion(>10‰)from the Gaojiayu Formation,which provides robust evidence for global correlation of the LJE,which has implications for its genesis and global significance.Moreover,due to global near-synchronization of the LJE,the carbon-oxygen isotope chemical stratigraphy of carbonate rocks deposited during the LJE period,combined with geochronological data,can provide new constraints on the stratigraphic subdivision and correlations of Paleoproterozoic sedimentary successions in the NCC.展开更多
The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the informatio...The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs.展开更多
Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2)...Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas.展开更多
Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the...Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the Sichuan Basin with the aim of unlocking its full resource potential.We conclude that,(1)The three-stage evolution of the Sichuan Basin has resulted in the stereoscopic distribution of hydrocarbon systems dominated by natural gas.The prospecting Nanhua-rift stage gas system is potentially to be found in the ultra-deep part of the basin.The marine-cratonic stage gas system is distributed in the Sinian to Mid-Triassic formations,mainly conventional gas and shale gas resources.The foreland-basin stage tight sand gas and shale oil resources are found in the Upper Triassic-Jurassic formations.Such resource base provides the foundation for the implementation of Super Basin paradigm in the Sichuan Basin.(2)To ensure larger scale hydrocarbon exploration and production,technologies regarding deep to ultra-deep carbonate reservoirs,tight-sand gas,and shale oil are necessarily to be advanced.(3)In order to achieve the full hydrocarbon potential of the Sichuan Basin,pertinent exploration strategies are expected to be proposed with regard to each hydrocarbon system respectively,government and policy supports ought to be strengthened,and new cooperative pattern should be established.Introducing the“Super Basin Thinking”provides references and guidelines for further deployment of hydrocarbon exploration and production in the Sichuan Basin and other developed basins.展开更多
Identification of the favorable salt-and potash-forming layer,we still mainly rely on logging interpretation and coring verification.However,we both know that the continuously carbonate platform is cyclical growing.It...Identification of the favorable salt-and potash-forming layer,we still mainly rely on logging interpretation and coring verification.However,we both know that the continuously carbonate platform is cyclical growing.It has recorded valuable information about the phase transition of carbonate rocks,which were synchronized with the relative sea-level cycles.This paper presents a fast and展开更多
Inorganic carbon forms and their influencing factors, mutual transformation and contribution to carbon cycling in the Jiaozhou Bay sediments were discussed. The results show that inorganic carbon in sediments could be...Inorganic carbon forms and their influencing factors, mutual transformation and contribution to carbon cycling in the Jiaozhou Bay sediments were discussed. The results show that inorganic carbon in sediments could be divided into five forms: NaCl form, NH3-H20 form, NaOH form, NH20H-HCl form and HCI form. Thereinto, NH2OH.HCl form and HCl form account for more than 70% of total inorganic carbon. There was close relationship among every form of inorganic carbon and their correlativity was clearly different with different sedimentary environment except the similar strong positive correlation among NH-OH-HCl form, HCl form and total inorganic carbon in all regions of the Jiaozhou Bay. All forms of inorganic carbon were influenced by organic carbon, pH, Eh, Es, nitrogen and phosphorus in sediments, but their influence had different characteristics in different regions. Every form of inorganic carbon transformed into each other continuously during early diagenesis of sediments and the common phenomenon was that NaCl form, NH3-H2O form, NaOH form and NH2OH-HCl form might transform into steady HCl form. NaCl form, NH3-H2O form, NaOH form and NH2OH-HCl form could participate in carbon recycle and they are potential carbon source; HCl form may be buried for a long time in sediments, and it may be one of the final resting places of atmospheric C02. Inorganic carbon which entered into sediments was about 4.98× 1010 g in the Jiaozhou Bay every year, in which about 1.47×1010 g of inorganic carbon might be buried for a long time and about 3.51 × 1010 g of inorganic carbon might return into seawater and take part in carbon recycling.展开更多
Effect of isobutyl-triethoxy-silane penetrative protective agent on the carbonation resistance of the concrete was studied.The concrete specimens for the 28 d accelerated carbonation process were manufactured with w/c...Effect of isobutyl-triethoxy-silane penetrative protective agent on the carbonation resistance of the concrete was studied.The concrete specimens for the 28 d accelerated carbonation process were manufactured with w/c of 0.49 and 0.64,both in the presence and absence of silane and mineral admixture.The penetration of isobutyl-triethoxy-silane and the carbonation of concrete were investigated by penetration depth,carbonation depth,XRD,SEM,and pore size distribution.The results showed that concrete compactness played an important role in the silane penetration and carbonation resistance.Penetration depth of silane-treated concrete mainly depended on the compactness of the concrete,and could not remarkably change through the accelerated carbonation process.In the accelerated carbonation process,penetrative protective agent improved the carbonation resistance of the higher compactness concretes but accelerated the carbonization process of the lower compactness concretes.As penetrative protective agent penetrated along the external connectivity pores into concrete not filling the entire surface area,the inorganic film could not fully protect the Ca(OH)_2 phase from carbonation.After 28 d accelerated carbonation,fibrous hydration products disappeared and the surface holes decreased.Due to the formation of carbonized products,the porosity of the concrete surface decreased,especially in high-strength concrete.展开更多
Marine sediments are the most significant reservoir of organic carbon(OC)in Earth′s surface system.Iron,a crucial component of the marine biogeochemical cycle,has a considerable impact on marine ecology and carbon cy...Marine sediments are the most significant reservoir of organic carbon(OC)in Earth′s surface system.Iron,a crucial component of the marine biogeochemical cycle,has a considerable impact on marine ecology and carbon cycling.Understanding the effect of iron on the preservation of OC in marine sediments is essential for comprehending biogeochemical processes of carbon and climate change.This review summarizes the methods for characterizing the content and structure of iron-bound OC and explores the influencing mechanism of iron on OC preservation in marine sediments from two aspects:the selective preservation of OC by reactive iron minerals(iron oxides and iron sulfides)and iron redox processes.The selective preservation of sedimentary OC is influenced by different types of reactive iron minerals,OC reactivity,and functional groups.The iron redox process has dual effects on the preservation and degradation of OC.By considering sedimentary records of iron-bound OC across diverse marine environments,the role of iron in long-term preservation of OC and its significance for carbon sequestration are illustrated.Future research should focus on identifying effective methods for extracting reactive iron,the effect of diverse functional groups and marine sedimentary environments on the selective preservation of OC,and the mediation of microorganisms.Such work will help elucidate the influencing mechanisms of iron on the long-term burial and preservation of OC and explore its potential application in marine carbon sequestration to maximize its role in achieving carbon neutrality.展开更多
基金Supported by the National Natural Science Foundation of ChinaCorporate Innovative Development Joint Fund(U19B6003)。
文摘Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.
基金This study was supported by the National Natural Science Foundation of China Grant No.48970116
文摘238 marine carbonate samples were collected from seven sedimentary sections ofthe entire late Palaeozoic (Permian, Carboniferous and Devonian) in the Upper Yangtze Plat-form, southwest China. Based on the absence of cathodoluminescence and very low Mn (gener-ally<50 ppm) contents of the samples, it is thought that they contain information on the orig-inal sea water geochemistry. The results of isotopic analyses of these samples are presented interms of δ^(13)C and ^(87)Sr/^(86)Sr ratios versus geological time. The strontium data, consistent withother similar data based on samples from North America, Europe, Africa and other areas inAsia, support the notion of a global consistency in strontium isotope composition of marinecarbonates. The strontium data exhibit three intervals of relatively low ^(87)Sr/^(86)Sr ratios in thelate Middle Devonian to early Late Devonian, Early Carboniferous and Early Permian, corre-sponding to global eustatic high sea level stands. The lowest ^(87)Sr/^(86)Sr ratio recorded in theLate Permian was probably caused by substantial basalt eruptions in the Upper Yangtze Plat-form at the time. Three corresponding periods of relatively high δ^(13)C values at roughly the samethe intervals were caused by a relatively high rate of accumulation of organic carbon duringsea level rises at these times. The deposition of coal was probably responsible for the increaseof sea water δ^(13)C at other times. The δ^(13)C values drop dramatically near theDevonian/Carboniferous, Carboniferous/Permian and Permian/Triassic boundaries, con-sistent with other similar data, which further support the notion that geological time boundariesare associated with mass extinction and subsequent rejuvenation.
文摘A series of significant discoveries in marine carbonate rocks show great petroleum exploration potential in the Tarim Basin. However, the oil and gas fields discovered in the carbonate rocks are mainly distributed around the Manjiaer Sag in the eastern Tarim Basin. Some explorations occurred and no oil or gas field was discovered around the Awati Sag in the western Tarim Basin. Information from wells and outcrops reveals that there are excellent oil and gas source rock conditions around the Awati Sag. Transformed reef-shoal reservoirs could be formed in the Ordovician carbonate rocks with paleo-geographic background and hydrothermal conditions. Therefore, it is necessary to make a systematical study and overall evaluation of the potential of the periphery of the Awati Sag in terms of source rock evolution, resource potential, high-grade reservoir formation and distribution, and main factors controlling hydrocarbon migration and accumulation.
基金supported by the National Natural Science Foundation(41072082)National Basic Research Program of China(No.2005CB422106)national key subject constructional item of mineralogy,petrology and mineral deposit(SZD0407)and backup candidate fund of academic and technical senior scholar in Sichuan Province
文摘^87Sr/^86Sr, δ^18O and δ^13C ratios of calcite, dolomite, gypsum filling vugs and fissures in marine carbonates and their host rocks from the Sinian to the middle Triassic, are employed to trace the possible source and migration path of key fluids related to development of hydrocarbon, hydrocarbon preservation condition are then discussed further. Comprehensive research, based on the paleo-fluid, the property of formation water and the deformation intensity etc., indicates that the preservation conditions in the Shizhu synclinorium zone and Fangdoushan anticlinorium zone are the most predominant in the central Yangtze. Three sets of fluid systems in the Shizhu synclinorium zone are identified. Little fluid exchange occurs between the upper-middle fluid system and the lower fluid system, so two independent preservation units have developed. Both the Permian and the Triassic in the upper preservation units and the Dengying Formation of the Sinian and the lower Cambrian in the lower preservation units have good preservation conditions. The preservation condition in the lower association (Z-S) located in the Huaguoping synclinorium zone in the western Hubei and Hunan is better than that in other tectonic units, where the fluids in the lower association migrated vertically across strata when the fluid isolating intervals were destroyed, the regional seals are absent and the conditions for the preservation of hydrocarbon accumulations are totally destroyed. The preservation condition is increasingly more favorable from the western Jiangxi and Hunan to the western Hubei & eastern Chongqing on the whole.
基金supported by the 973 State Project (Project no.2005CB422105)
文摘Based on the technology of balanced cross-section and physical simulation experiments associated with natural gas geochemical characteristic analyses, core and thin section observations, it has been proven that the Puguang gas reservoir has experienced two periods of diagenesis and restructuring since the Late Indo-Chinese epoch. One is the fluid transfer controlled by the tectonic movement and the other is geochemical reconstruction controlled by thermochemical sulfate reduction (TSR). The middle Yanshan epoch was the main period that the Puguang gas reservoir experienced the geochemical reaction of TSR. TSR can recreate the fluid in the gas reservoir, which makes the gas drying index higher and carbon isotope heavier because C2+ (ethane and heavy hydrocarbon) and 12C (carbon 12 isotope) is first consumed relative to CH4 and 13C (carbon 13 isotope). However, the reciprocity between fluid regarding TSR (hydrocarbon, sulfureted hydrogen (H2S), and water) and reservoir rock results in reservoir rock erosion and anhydrite alteration, which increases porosity in reservoir, thereby improving the petrophysical properties. Superimposed by later tectonic movement, the fluid in Puguang reservoir has twice experienced adjustment, one in the late Yanshan epoch to the early Himalayan epoch and the other time in late Himalayan epoch, after which Puguang gas reservoir is finally developed.
基金then the authors gratefully acknowledge financial support from the Key Droject the National Natural Foundation of China(No.42330810)the National Natural Science Foundation of China(Grant No.U19B6003-01-01)the State Key Program of the National Natural Science Foundation of China(No.41130422).
文摘It has always been challenging to determine the ancient sedimentary environment and associated energy in deep-buried marine carbonates.The energy represents the hydrodynamic conditions that existed when the carbonates were deposited.The energy includes light and chemical energies in compounds and kinetic energy in currents and mass flow.Deep-buried marine carbonates deposited during the Ordovician depositional period in the eastern Tarim Basin result from a complex interplay of tectonics,sedimentation,and diagenesis.As a result,determining the ancient sedimentary environment and associated energy is complex.The natural gamma-ray spectrometry(GRS)log(from 12 wells)is used in this paper to conduct studies on the sedimentary environment and associated energy in deep-buried marine carbonates.The findings show that the values of thorium(Th),uranium(U),potassium(K),and gamma-ray without uranium(KTh)in a natural GRS log can reveal lithological associations,mineral composition,diagenetic environment,stratigraphic water activity,and ancient climatic change.During the Ordovician,quantitative analysis and determination of sedimentary environment energy are carried out using a comprehensive calculation of natural GRS log parameters in typical wells(penetrating through the Ordovician with cores and thin sections)of well GC4,well GC6,well GC7,and well GC8.The results show that GRS log can determine different lithology associations in typical wells than a sieve residue log.Furthermore,cores and thin sections can be used to validate the determination of lithology associations.Based on the determination of lithology associations,the lithology associations that reflect the sedimentary environment and associated energy can be analyzed in a new approach.Furthermore,the sedimentary environment energy curve derived from a natural GRS log can reveal hydrodynamic fluctuations during depositional periods,which will aid in the discovery of carbonate reservoirs,establishing sequence stratigraphic frameworks,and the reconstruction of sea-level changes in the future.
基金supported by the National Basic Research Program of China (Grant No. 2005CB422108)
文摘Advances in studies of formation and accumulation mechanisms of oil and gas in marine carbonate sequences have led to continuing breakthroughs of petroleum exploration in marine carbonate sequences in Chinese sedimentary basins in recent years. The recently discovered giant Tahe Oil Field and Puguang Gas Field have provided geological entities for further studies of the formation and accumulation of oil and gas in marine carbonate sequences. Marine carbonate sequences in China are characterized by old age, multiple structural deformation, differential thermal evolution of source rocks, various reservoir types (i.e. reef-bank complex and paleo-weathered crust karst reservoir), uneven development of caprocks, especially gypsum seal, and multi-episodes of hydrocarbon accumulation and readjustment. As a result, the formation of hydrocarbon accumulations in the Chinese marine carbonate sequences has the following features: (i) the high-quality marine source rocks of shale and calcareous mudstone are often associated with siliceous rocks or calcareous rocks and were deposited in slope environments. They are rich in organic matter, have a higher hydrocarbon generation potential, but experienced variable thermal evolutions in different basins or different areas of the same basin. (ii) High quality reservoirs are controlled by both primary depositional environments and later modifications including diagenetic modifications, structural deformations, and fluid effects. (iii) Development of high-quality caprocks, especially gypsum seals, is the key to the formation of large-and medium-sized oil and gas fields in marine carbonate sequences. Gypsum often constitutes the caprock for most of large sized gas fields. Given that Chinese marine carbonate sequences are of old age and subject to multiple episodes of structural deformation and superposition, oil and gas tend to accumulate in the slopes and structural hinge zones, since the slopes favor the development of effective assemblage of source-reservoir-caprock, high quality source rocks, good reservoirs such as reef-bank complex, and various caprocks. As the structural hinge zones lay in the focus area of petroleum migration and experienced little structural deformation, they are also favorable places for hydrocarbon accumulation and preservation.
基金This research was supported by National Basic Research Program of China (Grant No. 2011CB808905), National Natural Science Foundation of China (Grant Nos. 41227801, 41273004, and 412003028), Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCW2-YW-Q08-4) and Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201433). We thank anonymous reviewers for their generous helps to improve the manuscript, and also appreciate members of experimental paleontology research group for their stimulating discussions and constructive suggestions.
文摘The Lopingian is one of the fastest rising periods of seawater strontium isotopic ratios (^87Sr/^86Sr) in earth history, and its mechanisms and increasing rates of the ^87Sr/^86Sr evolution were still disputed widely. These disputations among researchers were caused mainly by timeframe selection (sections' thickness or data of radiometric ages), and different stratigraphic boundaries and un-upmost dated ages. This paper examined published ^87Sr/^86Sr data of the Lopingian, and projected them on timescales based on evolutionary and age constrained conodonts fossils. ^87Sr/^86Sr evolution vs fossil constraining timescales was re-established in this period. This research suggests: (1) ^87Sr/^86Sr excursion projects on fossil zones can truly support ^87Sr/^86Sr evolutionary pattern in the period; (2) ^87Sr/^86Sr evolution provides a new approach for stratigraphic research of marine carbonate sections in lieu of biostratigraphic data; (3) ^87Sr/^86Sr stratigraphy works on marine carbonate sections of different sedimentation rates even between different basins; (4) the ^875r/^86Sr data and its shift was dependent on samples materials and chemical treatment methods; (5) the increasing rate of marine water ^875r/^86Sr in the Late Permian is suggested as 5.4× 10^-5/Ma or slightly lower; (6) sedimentation age and its ^875r/^86Sr of the Lopingian marine carbonate suggested as: Dpro=259-(Rs- 0.70695)/5.4×10^-5 (Ma).
基金sponsored by the National Key Basic Research Program of China (973 Program, 2012CB214806)the National Natural Science Foundation of China (No. 41372144)
文摘There are rich oil and gas resources in marine carbonate strata worldwide.Although most of the oil and gas reserves discovered so far are mainly distributed in Mesozoic,Cenozoic,and upper Paleozoic strata,oil and gas exploration in the Proterozoic–Lower Paleozoic(PLP)strata—the oldest marine strata—has been very limited.To more clearly understand the oil and gas formation conditions and distributions in the PLP marine carbonate strata,we analyzed and characterized the petroleum geological conditions,oil and gas reservoir types,and their distributions in thirteen giant oil and gas fields worldwide.This study reveals the main factors controlling their formation and distribution.Our analyses show that the source rocks for these giant oil and gas fields are mainly shale with a great abundance of type I–II organic matter and a high thermal evolution extent.The reservoirs are mainly gas reservoirs,and the reservoir rocks are dominated by dolomite.The reservoir types are mainly karst and reef–shoal bodies with well-developed dissolved pores and cavities,intercrystalline pores,and fractures.These reservoirs arehighly heterogeneous.The burial depth of the reservoirs is highly variable and somewhat negatively correlated to the porosity.The cap rocks are mainly thick evaporites and shales,with the thickness of the cap rocks positively correlated to the oil and gas reserves.The development of high-quality evaporite cap rock is highly favorable for oil and gas preservation.We identified four hydrocarbon generation models,and that the major source rocks have undergone a long period of burial and thermal evolution and are characterized by early and long periods of hydrocarbon generation.These giant oil and gas fields have diverse types of reservoirs and are mainly distributed in paleo-uplifts,slope zones,and platform margin reef-shoal bodies.The main factors that control their formation and distribution were identified,enabling the prediction of new favorable areas for oil and gas exploration.
基金financial support from National Natural Science Foundation of China(41802200)Natural Science Foundation of Hubei Province(2020CFB863)+5 种基金China Scholarship Council(201906415017)China University of Geosciences Wuhan(CUGQY1938)the partial support through JSPS KAKENHI Grant Numbers JP15H05831 and 20KK0081a PhD scholarship support from Niigata Universityfinancial support from National Natural Science Foundation of China(41520104003)China University of Geosciences Wuhan(CUGCJ1709)。
文摘The Lomagundi(-Jatuli)event,characterized by extremely high positive global inorganic carbon isotope excursion at about 2.2 billion years ago,is pivotal in investigating the causes and consequences of great oxygenation event,inventory and sequestration of carbon on the Earth’s surface,evolution of life,and more profoundly tectonic control on Earth’s environment.However,the reasons that caused the isotopic excursion are not resolved yet.Herein,we report the discovery of meta-carbonate rocks with distinct positive carbon isotopic excursion from the Paleoproterozoic continental collision zone of the Kongling Complex,South China Craton.The δ^(13)C_(V-PDB) values for meta-carbonate rocks show positive values in the range from+5.5‰to+11.6‰,whereas the δ^(13)C_(V-PDB) values of associated graphite deposits range from-25.8‰to-9.5‰.Zircon U-Pb-Hf isotopes from zircon-bearing meta-carbonate sample yielded weighted average _(207)Pb/_(206)Pb age of 2001.3±9.5 Ma,with correspondingε_(Hf)(t)range from-7.05 to-3.16,comparable to the values of local 2.9–2.6 Ga basement rocks.Geochemical characteristics of meta-carbonate rocks,such as their rare earth element patterns and the trace element parameters of La,Ce,Eu,and Gd anomalies and Y/Ho ratio,suggest that the carbonate deposition took place in passive continental margin in association with large volumes of organic carbon.The extensive graphite deposits from Kongling Complex in South China Craton,their equivalents in the North China Craton and elsewhere across the globe prove that the burial of ^(12)C-enriched organic carbon has eventually resulted in the global enrichment of ^(13)C in the atmospheric CO_(2),which is recorded in the marine carbonate rocks.Isotopic mass balance estimates indicate that more than half of the organic carbon was buried during the oceanic closure.Hence,the observed global shift could be directly related to the continent collision event in greater China,thus resolving the long-standing paradox of the Lomagundi global positive carbon isotope excursion.Moreover,the present results suggest that orogenesis play a significant role in sequestration of carbon into the continental crust.
文摘The study investigates the potential of the serpulid tubeworm Ficopomatus sp.,sourced from Jesolo Lido(Venice,Italy),for CCS(Carbon Capture and Storage).Specimens were processed to extract bioactive compounds using a 50%polypropylene glycol-water solvent system.Extracts were analysed and purified using column gel filtration chromatography,with fractions identified by TLC(Thin Layer Chromatography)and further characterized for antioxidant and antibacterial activities.Antioxidant activity was detected via DPPH(2,2-Diphenyl-1-Picrylhydrazyl)spraying on TLC plates,while antibacterial activity was evaluated using the antibiogram paper disk diffusion method.Enzyme activity in the fractions was previously confirmed through a bromothymol blue test followed by spectrophotometric analysis.The primary goal was to explore the CCS potential,using an experimental module involving Arduino Uno embedded microprocessor for the CO_(2) measurement and to confirm the conversion into insoluble carbonates(storage).The most active fraction,identified as S1,showed significant CCS action,confirmed by microscopic observation of calcareous deposits on treated sponges.These findings suggest that Ficopomatus sp.can be used in CCS research highlighting its potential for biotechnological applications in mitigating climate change.The paper underscores the importance of marine organisms in CCS and offers insights into innovative strategies for environmental conservation and carbon management.
基金The Fund of Key Laboratory of Control of Quality and Safety for Aquatic Products,Ministry of Agriculture and Rural Affairs,P.R.China under contract No.2021C001the National Key Research and Development Program of China under contract No.2018YFD0900703the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research and Development Program under contract No.2019JZZY020706。
文摘To characterize environmental factors controlling decadal-scale variations in the buried flux of marine organic carbon(BFC_(m))in the eastern shelf sea areas of China(ECSS),four well preserved sediment cores collected from the central Yellow Sea mud(CYSM)area,the Yellow Sea Coastal Current(YSCC)area and the Changjiang River Estuary(CRE)were investigated in this study.In the CYSM,variations in BFC_(m) were found to be dependent on variations in primary productivity and to exhibit a cyclical trend possibly related to fluctuations in the Pacific Decadal Oscillation(PDO)and the East Asian winter monsoon index(EAWM).In the YSCC,BFC_(m) likewise depends on primary productivity.Prior to the 1950s,variations in BFC_(m) were similar to that of the EAWM.After the 1950s,BFC_(m) increased rapidly and exhibited maximum values in the surface layer,consistent with an increase in primary productivity caused by the input of terrestrial nutrients associated with China’s economic development.In the CRE,variations in BFC_(m) were affected by several competing factors making it difficult to identify clear relationships between variations in BFC_(m) and primary productivity.In contrast,long-term variability in BFC_(m) is more similar to changes in the Changjiang River sediment load.Thus,it is speculated that the construction of dams along the Changjiang River may be the main cause of variations in BFC_(m) in this area.Given the disproportionate effects of human activities on marine environments and decadal variations in BFC_(m) in the ECSS,careful attention should be paid to regional differences in organic carbon preservation and environmental changes lest estimates of these values be made imprecise or inaccurate.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41920104004,U2244213,41725011)the Fundamental Research Fund of Chinese Academy of Geological Sciences(Grant No.JKYZD202320)。
文摘The Great Oxidation Event(GOE)during the early Paleoproterozoic represents the first significant buildup in Earth’s atmospheric oxygen and resulted in a series of significant changes in the Earth’s surface environment.Among them is the 2.22(or 2.33)–2.06 Ga Lomagundi-Jatuli Event(LJE),which is globally,the largest magnitude and longest duration,marine carbonate positive carbon isotope excursion(δ^(13)C_(V-PDB)>10‰)known.This event has attracted the attention of scholars all over the world.However,except for a high positive carbon isotope excursion(δ^(13)C_(V-PDB)>10‰)recently identified from marine carbonate rocks within the Daposhan Formation in the lower Fanhe Group(or the Sanchazi Group)in the Longgang Block in the northeast North China Craton(NCC),Paleoproterozoic carbonates in the NCC are characterized by a low-amplitude positive carbon isotope excursion(δ^(13)C_(V-PDB)<5‰).This feature is significantly different from the high positive carbon isotope excursion characteristics of carbonates deposited during the LJE period in other cratons.To determine whether there are large-scale and reliable sedimentary records of the LJE in the NCC and the reasons for the low positive δ^(13)C excursion of the Paleoproterozoic carbonates obtained by the previous studies,we conducted field investigations,carbon-oxygen isotopes,and whole-rock major and trace element geochemical analyses of Liaohe Group carbonate rocks from the Anshan area in the northwestern margin of the Jiao-Liao-Ji Belt in the northeast NCC.Our results show that the Gaojiayu Formation of the Liaohe Group in the Anshan area has high positive δ^(13)C_(V-PDB) values from 8.6‰ to 12.4‰ and δ^(18)O_(V-SMOW) values of 17.9‰-27.4‰(δ^(18)O_(V-PDB) values ranging from−12.6‰to -3.4‰).This provides solid evidence for the preservation of reliable sedimentary records of the LJE in the northeastern NCC.Deposition of the high positive δ^(13)C excursion(>10‰)of marine carbonate rocks occurred at about 2.15 Ga.Lithological comparisons of different sections and whole-rock geochemical results show that the high positive δ^(13)C excursion is mainly controlled by the stratigraphic interval and depositional ages;the changes of sedimentary facies and diagenesis have no significant effects on reducing of the δ^(13)C values.The intrusion of mafic sills into carbonates has resulted in synchronous decrease of C-O isotopes near the contact zones,but the decreasing amplitude of δ^(13)C is less than 3‰.Therefore,our study firstly identified marine carbonates with high positive δ^(13)C excursion(>10‰)from the Gaojiayu Formation,which provides robust evidence for global correlation of the LJE,which has implications for its genesis and global significance.Moreover,due to global near-synchronization of the LJE,the carbon-oxygen isotope chemical stratigraphy of carbonate rocks deposited during the LJE period,combined with geochronological data,can provide new constraints on the stratigraphic subdivision and correlations of Paleoproterozoic sedimentary successions in the NCC.
文摘The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs.
文摘Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas.
基金National Science and Technology Major Project(2016ZX05004-001)China National Petroleum Corporation Science and Technology Project(2021DJ02)。
文摘Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the Sichuan Basin with the aim of unlocking its full resource potential.We conclude that,(1)The three-stage evolution of the Sichuan Basin has resulted in the stereoscopic distribution of hydrocarbon systems dominated by natural gas.The prospecting Nanhua-rift stage gas system is potentially to be found in the ultra-deep part of the basin.The marine-cratonic stage gas system is distributed in the Sinian to Mid-Triassic formations,mainly conventional gas and shale gas resources.The foreland-basin stage tight sand gas and shale oil resources are found in the Upper Triassic-Jurassic formations.Such resource base provides the foundation for the implementation of Super Basin paradigm in the Sichuan Basin.(2)To ensure larger scale hydrocarbon exploration and production,technologies regarding deep to ultra-deep carbonate reservoirs,tight-sand gas,and shale oil are necessarily to be advanced.(3)In order to achieve the full hydrocarbon potential of the Sichuan Basin,pertinent exploration strategies are expected to be proposed with regard to each hydrocarbon system respectively,government and policy supports ought to be strengthened,and new cooperative pattern should be established.Introducing the“Super Basin Thinking”provides references and guidelines for further deployment of hydrocarbon exploration and production in the Sichuan Basin and other developed basins.
文摘Identification of the favorable salt-and potash-forming layer,we still mainly rely on logging interpretation and coring verification.However,we both know that the continuously carbonate platform is cyclical growing.It has recorded valuable information about the phase transition of carbonate rocks,which were synchronized with the relative sea-level cycles.This paper presents a fast and
基金The opening foundation of the Key Laboratory of Marine Sedimentology & Environmental Geology,SOA under contract No. MASEG200606Creative Research Groups by NSFC under contract No.40821004+1 种基金the National Key Project for Basic Research of China under contract No. 2007CB407305the "100 Talents Project" of the Chinese Academy of Sciences
文摘Inorganic carbon forms and their influencing factors, mutual transformation and contribution to carbon cycling in the Jiaozhou Bay sediments were discussed. The results show that inorganic carbon in sediments could be divided into five forms: NaCl form, NH3-H20 form, NaOH form, NH20H-HCl form and HCI form. Thereinto, NH2OH.HCl form and HCl form account for more than 70% of total inorganic carbon. There was close relationship among every form of inorganic carbon and their correlativity was clearly different with different sedimentary environment except the similar strong positive correlation among NH-OH-HCl form, HCl form and total inorganic carbon in all regions of the Jiaozhou Bay. All forms of inorganic carbon were influenced by organic carbon, pH, Eh, Es, nitrogen and phosphorus in sediments, but their influence had different characteristics in different regions. Every form of inorganic carbon transformed into each other continuously during early diagenesis of sediments and the common phenomenon was that NaCl form, NH3-H2O form, NaOH form and NH2OH-HCl form might transform into steady HCl form. NaCl form, NH3-H2O form, NaOH form and NH2OH-HCl form could participate in carbon recycle and they are potential carbon source; HCl form may be buried for a long time in sediments, and it may be one of the final resting places of atmospheric C02. Inorganic carbon which entered into sediments was about 4.98× 1010 g in the Jiaozhou Bay every year, in which about 1.47×1010 g of inorganic carbon might be buried for a long time and about 3.51 × 1010 g of inorganic carbon might return into seawater and take part in carbon recycling.
基金Funded by the National Sci-Tech Support Plan of China(No.2013BAJ10B05)Marine Interdisciplinary Research Guide Fund of Zhejiang University(No.2012HY003B)
文摘Effect of isobutyl-triethoxy-silane penetrative protective agent on the carbonation resistance of the concrete was studied.The concrete specimens for the 28 d accelerated carbonation process were manufactured with w/c of 0.49 and 0.64,both in the presence and absence of silane and mineral admixture.The penetration of isobutyl-triethoxy-silane and the carbonation of concrete were investigated by penetration depth,carbonation depth,XRD,SEM,and pore size distribution.The results showed that concrete compactness played an important role in the silane penetration and carbonation resistance.Penetration depth of silane-treated concrete mainly depended on the compactness of the concrete,and could not remarkably change through the accelerated carbonation process.In the accelerated carbonation process,penetrative protective agent improved the carbonation resistance of the higher compactness concretes but accelerated the carbonization process of the lower compactness concretes.As penetrative protective agent penetrated along the external connectivity pores into concrete not filling the entire surface area,the inorganic film could not fully protect the Ca(OH)_2 phase from carbonation.After 28 d accelerated carbonation,fibrous hydration products disappeared and the surface holes decreased.Due to the formation of carbonized products,the porosity of the concrete surface decreased,especially in high-strength concrete.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.202241001)the Natural Nature Science Foundation of China(Grant Nos.42076074,42006041&42076034)the Taishan Scholar Program(Grant No.TSQN20182117).
文摘Marine sediments are the most significant reservoir of organic carbon(OC)in Earth′s surface system.Iron,a crucial component of the marine biogeochemical cycle,has a considerable impact on marine ecology and carbon cycling.Understanding the effect of iron on the preservation of OC in marine sediments is essential for comprehending biogeochemical processes of carbon and climate change.This review summarizes the methods for characterizing the content and structure of iron-bound OC and explores the influencing mechanism of iron on OC preservation in marine sediments from two aspects:the selective preservation of OC by reactive iron minerals(iron oxides and iron sulfides)and iron redox processes.The selective preservation of sedimentary OC is influenced by different types of reactive iron minerals,OC reactivity,and functional groups.The iron redox process has dual effects on the preservation and degradation of OC.By considering sedimentary records of iron-bound OC across diverse marine environments,the role of iron in long-term preservation of OC and its significance for carbon sequestration are illustrated.Future research should focus on identifying effective methods for extracting reactive iron,the effect of diverse functional groups and marine sedimentary environments on the selective preservation of OC,and the mediation of microorganisms.Such work will help elucidate the influencing mechanisms of iron on the long-term burial and preservation of OC and explore its potential application in marine carbon sequestration to maximize its role in achieving carbon neutrality.