Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the c...Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the characteristics of wave velocity changes tend to become insignificant beyond a certain limit. In contrast, the controllable source electromagnetic method(CSEM) remains highly sensitive to resistivity changes. By simulating different CO_(2) plume migration conditions, we established the relevant models and calculated the corresponding electric field response characteristic curves, allowing us to analyze the CSEM's ability to monitor CO_(2) plumes. We considered potential scenarios for the migration and diffusion of offshore CO_(2) storage, including various burial depths, vertical extension diffusion, lateral extension diffusion,multiple combinations of lateral intervals, and electric field components. We also obtained differences in resistivity inversion imaging obtained by CSEM to evaluate its feasibility in monitoring and to analyze all the electric field(Ex, Ey, and Ez) response characteristics. CSEM has great potential in monitoring CO_(2) plume migration in offshore saltwater reservoirs due to its high sensitivity and accuracy. Furthermore, changes in electromagnetic field response reflect the transport status of CO_(2) plumes, providing an important basis for monitoring and evaluating CO_(2)transport behavior during storage processes.展开更多
Deep target hydrocarbon detection is still challenging and expensive. Direct hydrocarbon indicators (DHIs) in seismic data do not correspond to economical hydrocarbon exploration. Due to unreliability in seismic data ...Deep target hydrocarbon detection is still challenging and expensive. Direct hydrocarbon indicators (DHIs) in seismic data do not correspond to economical hydrocarbon exploration. Due to unreliability in seismic data for the detection of DHIs, new methods have been investigated. Marine controlled source electromagnet (MCSEM) or Sea bed logging (SBL) is new method for the detection of deep target hydrocarbon reservoir. Sea bed logging has also the potential to reduce the risks of DHIs in deep sea environment. Modelling of real sea environment helps to reduce the further risks before drilling the oil wells. 3D electromagnetic (EM) modelling of seabed logging requires more accurate methods for the detection of hydrocarbon reservoir. Finite element method (FEM) is chosen for the modelling of seabed logging to get more precise EM response from hydrocarbon reservoir below 4000 m from seabed. FEM allows to investigate the total electric and magnetic fields instead of scattered electric and magnetic fields, which shows accurate and precise resistivity contrast below the seabed. From the modelling results, It was investigated that Hz field shows higher magni- tude with 342% than the Ex field. It was observed that 0.125 Hz frequency can be able to show better resistivity contrast of Hz field (31.30%) and Ex field (16.49%) at target depth of 1000 m below seafloor for our proposed model. Hz and Ex field delineation was found to decrease as target depth increased from 1000 m to 4000 m. At the target depth of 4000 m, no field delineation response was seen from the current electromagnetic (EM) antenna used by the industry. New EM antenna has been used to see the EM response for deep target hydrocarbon detection. It was investigated that novel EM antenna shows better delineation at 4000 m target depth for Ex and Hz field up to 10.3% and 15.1% respectively. Novel EM antenna also shows better Hz phase response (128.4%) than the Ex phase response (38.3%) at the target depth of 4000 m below the seafloor.展开更多
强干扰区多类噪声时空叠加,对电磁勘探的影响严重且复杂.以往的人工源电磁(Controlled-Source Electromagnetic Method,CSEM)信号处理方法大多针对单道数据进行处理,并未考虑各道之间的相关性,从而产生非必要的误差.为此,在同步观测的...强干扰区多类噪声时空叠加,对电磁勘探的影响严重且复杂.以往的人工源电磁(Controlled-Source Electromagnetic Method,CSEM)信号处理方法大多针对单道数据进行处理,并未考虑各道之间的相关性,从而产生非必要的误差.为此,在同步观测的基础上,本文提出一种基于站间传递函数的CSEM有效信号提取方法.首先,从多域对同步观测的CSEM数据进行质量评价,优选出高信噪比的参考站;其次,基于参考站与测站之间的时域信号方差比(Ratio of variance,ROV)实现测站强干扰噪声的快速识别与定位,采用密度聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)筛选出测站高信噪比数据段,并构建频率域站间传递函数;最后,考虑各道之间的相关性,利用参考站信号与站间传递函数对受强干扰时间段的观测数据进行处理,从而实现了强干扰环境下CSEM有效信号的高精度提取.通过对仿真信号与广域电磁法(Wide Field Electromagnetic Method,WFEM)实测数据的处理,验证了方法的有效性和实用性.结果表明,本文提出的基于站间传递函数的CSEM信噪分离方法不仅考虑了多道同步观测数据之间的相关性,还能在不增加野外工作量的基础上实现对有效信号的高精度提取,方法具有普适性,为CSEM同步阵列数据处理提供了一种快速、可行的解决方案.展开更多
基金Supported by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (2019BT02H594)Sanya Technology Innovation Special Project (2022KJCX08)。
文摘Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the characteristics of wave velocity changes tend to become insignificant beyond a certain limit. In contrast, the controllable source electromagnetic method(CSEM) remains highly sensitive to resistivity changes. By simulating different CO_(2) plume migration conditions, we established the relevant models and calculated the corresponding electric field response characteristic curves, allowing us to analyze the CSEM's ability to monitor CO_(2) plumes. We considered potential scenarios for the migration and diffusion of offshore CO_(2) storage, including various burial depths, vertical extension diffusion, lateral extension diffusion,multiple combinations of lateral intervals, and electric field components. We also obtained differences in resistivity inversion imaging obtained by CSEM to evaluate its feasibility in monitoring and to analyze all the electric field(Ex, Ey, and Ez) response characteristics. CSEM has great potential in monitoring CO_(2) plume migration in offshore saltwater reservoirs due to its high sensitivity and accuracy. Furthermore, changes in electromagnetic field response reflect the transport status of CO_(2) plumes, providing an important basis for monitoring and evaluating CO_(2)transport behavior during storage processes.
文摘Deep target hydrocarbon detection is still challenging and expensive. Direct hydrocarbon indicators (DHIs) in seismic data do not correspond to economical hydrocarbon exploration. Due to unreliability in seismic data for the detection of DHIs, new methods have been investigated. Marine controlled source electromagnet (MCSEM) or Sea bed logging (SBL) is new method for the detection of deep target hydrocarbon reservoir. Sea bed logging has also the potential to reduce the risks of DHIs in deep sea environment. Modelling of real sea environment helps to reduce the further risks before drilling the oil wells. 3D electromagnetic (EM) modelling of seabed logging requires more accurate methods for the detection of hydrocarbon reservoir. Finite element method (FEM) is chosen for the modelling of seabed logging to get more precise EM response from hydrocarbon reservoir below 4000 m from seabed. FEM allows to investigate the total electric and magnetic fields instead of scattered electric and magnetic fields, which shows accurate and precise resistivity contrast below the seabed. From the modelling results, It was investigated that Hz field shows higher magni- tude with 342% than the Ex field. It was observed that 0.125 Hz frequency can be able to show better resistivity contrast of Hz field (31.30%) and Ex field (16.49%) at target depth of 1000 m below seafloor for our proposed model. Hz and Ex field delineation was found to decrease as target depth increased from 1000 m to 4000 m. At the target depth of 4000 m, no field delineation response was seen from the current electromagnetic (EM) antenna used by the industry. New EM antenna has been used to see the EM response for deep target hydrocarbon detection. It was investigated that novel EM antenna shows better delineation at 4000 m target depth for Ex and Hz field up to 10.3% and 15.1% respectively. Novel EM antenna also shows better Hz phase response (128.4%) than the Ex phase response (38.3%) at the target depth of 4000 m below the seafloor.
文摘强干扰区多类噪声时空叠加,对电磁勘探的影响严重且复杂.以往的人工源电磁(Controlled-Source Electromagnetic Method,CSEM)信号处理方法大多针对单道数据进行处理,并未考虑各道之间的相关性,从而产生非必要的误差.为此,在同步观测的基础上,本文提出一种基于站间传递函数的CSEM有效信号提取方法.首先,从多域对同步观测的CSEM数据进行质量评价,优选出高信噪比的参考站;其次,基于参考站与测站之间的时域信号方差比(Ratio of variance,ROV)实现测站强干扰噪声的快速识别与定位,采用密度聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)筛选出测站高信噪比数据段,并构建频率域站间传递函数;最后,考虑各道之间的相关性,利用参考站信号与站间传递函数对受强干扰时间段的观测数据进行处理,从而实现了强干扰环境下CSEM有效信号的高精度提取.通过对仿真信号与广域电磁法(Wide Field Electromagnetic Method,WFEM)实测数据的处理,验证了方法的有效性和实用性.结果表明,本文提出的基于站间传递函数的CSEM信噪分离方法不仅考虑了多道同步观测数据之间的相关性,还能在不增加野外工作量的基础上实现对有效信号的高精度提取,方法具有普适性,为CSEM同步阵列数据处理提供了一种快速、可行的解决方案.