A new gravity sensor based on electromagnetic damping for the JMGrav marine gravimeter is presented.The new gravity sensor considered the advanced construction methods of the electromagnetic damping system of the grav...A new gravity sensor based on electromagnetic damping for the JMGrav marine gravimeter is presented.The new gravity sensor considered the advanced construction methods of the electromagnetic damping system of the gravimeter.The design features of the new system are discussed and the research survey data in the South China Sea are shown.Numerical simulations are applied to model the magnetic and mechanical characteristics of the system using finite element analysis and to evaluate the force distribution and the resulting damping effects.The performance characteristics of the system were tested on a motion simulator in laboratory,and the gravimeter was subjected to vertical accelerations of up to 100 Gal in 1-1000 s.It was found that the amplitude reduction of vertical accelerations in 3-15 s is 30-45 dB,with a time lag of 2-5 s,while the effect on gravity in period greater than 600 s is less than 0.5 dB,with a time lag of less than 100 s.The accelerations cause discrepancies of approximately only 1 mGal between the static value and the mean dynamic value.The sea tests were conducted in September 2020.Gravity measurements were taken with a JMGrav marine gravimeter onboard the R/V Dongfanghong 3,and the effective survey line exceeded 2000 km.Completely irregular accelerations with peaks up to 100 Gal yielded a reduction of approximately 40 dB in amplitude.The survey data were evaluated using ocean gravity field models and grid line tests.The results show that the accuracy of the gravity measurements is better than 2 mGal.展开更多
A high-power marine controlled-source electromagnetic transmitter(HP-MCSET)transmits a highfrequency conversion current on the sea floor.Some problems exist when the direct-current to alternating-current(DC-AC)launch ...A high-power marine controlled-source electromagnetic transmitter(HP-MCSET)transmits a highfrequency conversion current on the sea floor.Some problems exist when the direct-current to alternating-current(DC-AC)launch bridge(LB)is used in the marine controlled-source electromagnetic transmitter(MCSET).There is a high voltage peak in the LB when the insulated gate bipolar transistor(IGBT)is turned on and off.In some cases,the voltage stress of the IGBT can be exceeded,which may cause IGBT damage.Because the rise of the current steepness is relatively low and the output voltage has a voltage peak in the LB,a snubber circuit is added to the IGBT to suppress the voltage peak to improve the output current and voltage waveform.The suppression of the voltage peaks is analyzed and compared for several groups of snubber circuits.To meet the performance requirements of the MCSET,the optimal snubber circuit is selected to effectively suppress the voltage peaks at an output current of 1 kA.This method is verified by using a 70 kW MCSET and the experimental waveforms are provided.The simulation of the inductance obstruction load in seawater is necessary to determine the conditions for actual marine environment experiments.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.42192535,41876136)the Guangdong Special Support Program(No.2019BT02H594)。
文摘A new gravity sensor based on electromagnetic damping for the JMGrav marine gravimeter is presented.The new gravity sensor considered the advanced construction methods of the electromagnetic damping system of the gravimeter.The design features of the new system are discussed and the research survey data in the South China Sea are shown.Numerical simulations are applied to model the magnetic and mechanical characteristics of the system using finite element analysis and to evaluate the force distribution and the resulting damping effects.The performance characteristics of the system were tested on a motion simulator in laboratory,and the gravimeter was subjected to vertical accelerations of up to 100 Gal in 1-1000 s.It was found that the amplitude reduction of vertical accelerations in 3-15 s is 30-45 dB,with a time lag of 2-5 s,while the effect on gravity in period greater than 600 s is less than 0.5 dB,with a time lag of less than 100 s.The accelerations cause discrepancies of approximately only 1 mGal between the static value and the mean dynamic value.The sea tests were conducted in September 2020.Gravity measurements were taken with a JMGrav marine gravimeter onboard the R/V Dongfanghong 3,and the effective survey line exceeded 2000 km.Completely irregular accelerations with peaks up to 100 Gal yielded a reduction of approximately 40 dB in amplitude.The survey data were evaluated using ocean gravity field models and grid line tests.The results show that the accuracy of the gravity measurements is better than 2 mGal.
基金the National Science and Technology Major Project(No.2016ZX05021-002)the Strategic Pilot Science and Technology Project of the Chinese Academy of Sciences(No.XDB06030204)。
文摘A high-power marine controlled-source electromagnetic transmitter(HP-MCSET)transmits a highfrequency conversion current on the sea floor.Some problems exist when the direct-current to alternating-current(DC-AC)launch bridge(LB)is used in the marine controlled-source electromagnetic transmitter(MCSET).There is a high voltage peak in the LB when the insulated gate bipolar transistor(IGBT)is turned on and off.In some cases,the voltage stress of the IGBT can be exceeded,which may cause IGBT damage.Because the rise of the current steepness is relatively low and the output voltage has a voltage peak in the LB,a snubber circuit is added to the IGBT to suppress the voltage peak to improve the output current and voltage waveform.The suppression of the voltage peaks is analyzed and compared for several groups of snubber circuits.To meet the performance requirements of the MCSET,the optimal snubber circuit is selected to effectively suppress the voltage peaks at an output current of 1 kA.This method is verified by using a 70 kW MCSET and the experimental waveforms are provided.The simulation of the inductance obstruction load in seawater is necessary to determine the conditions for actual marine environment experiments.