This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being...This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being reported for the first time. The exhaust is takenfrom a diesel engine of 6 kW under no load conditions. Thecharacteristic behavior of a pulse energized dielectric barrierdischarge reactor in the diesel exhaust treatment is reported. TheNOx removal was not significant (36/100) when the reactor without anypacking was used.展开更多
In this study,a model is developed to simulate the dynamics of an internal combustion engine,and it is calibrated and validated against reliable experimental data,making it a tool that can effectively be adopted to co...In this study,a model is developed to simulate the dynamics of an internal combustion engine,and it is calibrated and validated against reliable experimental data,making it a tool that can effectively be adopted to conduct emission predictions.In this work,the Ricardo WAVE software is applied to the simulation of a particular marine diesel engine,a four-stroke engine used in the maritime field.Results from the bench tests are used for the calibration of the model.Finally,the calibration of the model and its validation with full-scale data measured at sea are presented.The prediction includes not only the classic engine operating parameters for a comparison with surveys but also an estimate of nitrogen oxide emissions,which are compared with similar results obtained with emission factors.The calibration of the model made it possible to obtain an overlap between the simulation results and real data with an average error of approximately 7%on power,torque,and consumption.The model provides encouraging results,suggesting further applications,such as in the study on transient conditions,coupling of the engine model with the ship model for a complete simulation of the operating conditions,and optimization studies on consumption and emissions.The availability of the emission data during the sea trial and validated simulation results are the strengths and novelties of this work.展开更多
Emissions of exhaust gases and particulate matter from a dual fuel marine engine using methanol as fuel with marine gasoil as pilot fuel have been examined for a ferry during operation.The emission factor for nitrogen...Emissions of exhaust gases and particulate matter from a dual fuel marine engine using methanol as fuel with marine gasoil as pilot fuel have been examined for a ferry during operation.The emission factor for nitrogen oxides is lower than what is typically found for marine gasoil but does not reach the tier III limit.The emissions of particulate matter are significantly lower than for fuel oils and similar to what is found for LNG engines.The main part of the particles can be found in the ultrafine range with the peak being at around 18 nm.About 93%of the particles are evaporated and absorbed when using a thermodenuder,and thus a large majority of the particles are volatile.Methanol is a potential future marine fuel that will reduce emissions of air pollutants and can be made as a biofuel to meet emission targets for greenhouse gases.展开更多
In order to reduce oxides of nitrogen (NOx) emanated from a diesel engine, a comprehensive urea selective catalyst reduction (SCR) DeNOx catalyst was modeled in which numerical simulations were used as a complemen...In order to reduce oxides of nitrogen (NOx) emanated from a diesel engine, a comprehensive urea selective catalyst reduction (SCR) DeNOx catalyst was modeled in which numerical simulations were used as a complementary tool for the experimental investigations to make the design decisions, and hence shorten the de- velopment process. In this approach, relevant conversion reactions were studied in 1D model, and the parame- ters obtained in this way were transferred to 3D simulations. According to the results of the study, the conver- sion of NO and NO2 increased with the increase in monolith solid temperature. With the increase in the ratio of NO2/NOx the conversion of NO, NO2 and NOx increased resulting in maximum reduction of NOxat the ratio of 1; beyond this ratio, the conversion of NO2 and NOx decreased; however, NO continued to be converted till the ratio was 1.8. The conversion of NOx decreased with the increase in space velocity.展开更多
文摘This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being reported for the first time. The exhaust is takenfrom a diesel engine of 6 kW under no load conditions. Thecharacteristic behavior of a pulse energized dielectric barrierdischarge reactor in the diesel exhaust treatment is reported. TheNOx removal was not significant (36/100) when the reactor without anypacking was used.
基金Open access funding provided by Universita degli Studi di Napoli Federico II within the CRUI-CARE Agreement.
文摘In this study,a model is developed to simulate the dynamics of an internal combustion engine,and it is calibrated and validated against reliable experimental data,making it a tool that can effectively be adopted to conduct emission predictions.In this work,the Ricardo WAVE software is applied to the simulation of a particular marine diesel engine,a four-stroke engine used in the maritime field.Results from the bench tests are used for the calibration of the model.Finally,the calibration of the model and its validation with full-scale data measured at sea are presented.The prediction includes not only the classic engine operating parameters for a comparison with surveys but also an estimate of nitrogen oxide emissions,which are compared with similar results obtained with emission factors.The calibration of the model made it possible to obtain an overlap between the simulation results and real data with an average error of approximately 7%on power,torque,and consumption.The model provides encouraging results,suggesting further applications,such as in the study on transient conditions,coupling of the engine model with the ship model for a complete simulation of the operating conditions,and optimization studies on consumption and emissions.The availability of the emission data during the sea trial and validated simulation results are the strengths and novelties of this work.
文摘Emissions of exhaust gases and particulate matter from a dual fuel marine engine using methanol as fuel with marine gasoil as pilot fuel have been examined for a ferry during operation.The emission factor for nitrogen oxides is lower than what is typically found for marine gasoil but does not reach the tier III limit.The emissions of particulate matter are significantly lower than for fuel oils and similar to what is found for LNG engines.The main part of the particles can be found in the ultrafine range with the peak being at around 18 nm.About 93%of the particles are evaporated and absorbed when using a thermodenuder,and thus a large majority of the particles are volatile.Methanol is a potential future marine fuel that will reduce emissions of air pollutants and can be made as a biofuel to meet emission targets for greenhouse gases.
基金Sponsored by Postdoctoral Science Foundation of China(2007042031)
文摘In order to reduce oxides of nitrogen (NOx) emanated from a diesel engine, a comprehensive urea selective catalyst reduction (SCR) DeNOx catalyst was modeled in which numerical simulations were used as a complementary tool for the experimental investigations to make the design decisions, and hence shorten the de- velopment process. In this approach, relevant conversion reactions were studied in 1D model, and the parame- ters obtained in this way were transferred to 3D simulations. According to the results of the study, the conver- sion of NO and NO2 increased with the increase in monolith solid temperature. With the increase in the ratio of NO2/NOx the conversion of NO, NO2 and NOx increased resulting in maximum reduction of NOxat the ratio of 1; beyond this ratio, the conversion of NO2 and NOx decreased; however, NO continued to be converted till the ratio was 1.8. The conversion of NOx decreased with the increase in space velocity.