The current scheme of building climate zones in China generally assumes that building climate zones of island cities are identical to adjacent land stations.Consequently,building design strategies for island buildings...The current scheme of building climate zones in China generally assumes that building climate zones of island cities are identical to adjacent land stations.Consequently,building design strategies for island buildings usually refer to those developed for inland cities.This approach has to some extent hindered the energy-saving design and green development of island buildings in China.This research takes a first step on this issue by defining the building climate zones of 36 marine islands over China marine area using two-stage zoning methodology adopted by current building climate zoning standard(GB50178-1993).The meteorological data used for analysis was obtained from the National Climate Center of China over the 30-year period from 1985 to 2014.As comparison,40 coastal stations which are adjacent to the inves-tigated marine islands were also included in this study.Subsequently a more obiective techni-que-cluster analysis was operated as an effective supplement to discover the climate characteristics among different observations.The results of both methodologies consistentlyshow that among the 36 islands investigated,the majority of islands located in northern and eastern marine area belong to the same climate zones as their adjacent coastal cities.Howev-er,island cities in southern marine area cannot be assigned to any current climate zone,which was demonstrated by its distinctive climate features different from any other sites investi-gated through cluster analysis as well as different energy use patterns.Thus a new zone was defined to supplement the current building climate zoning scheme to cover marine area of China.展开更多
The concentrations of five metals(Cu, Pb, Zn, Cd and Hg) were measured in sediments obtained before and after the establishment of Techeng Island Special Marine Reserves(TCISMR) in Zhanjiang Bay to evaluate the ecolog...The concentrations of five metals(Cu, Pb, Zn, Cd and Hg) were measured in sediments obtained before and after the establishment of Techeng Island Special Marine Reserves(TCISMR) in Zhanjiang Bay to evaluate the ecological risk of heavy metals. The results showed that average values of potential ecological risk indexes of heavy metals at all stations increased slightly from 32.09 to 30.54 after establishment of TCISMR. Optimal semivariance simulation showed that the contents of five heavy metals have strong spatial correlations in August 2010(before), while this correlations weakened in April 2013(after establishment of TCISMR), suggesting that the main sources of heavy metals changed. The Hakanson Risk Index(HRI) values in Donghai levee, central and southern parts of Zhanjiang harbor were high up to 60.13 and 46.46, respectively. And Zhanjiang Bay Channel, the areas around special marine reserves, the artificial reef areas and mangrove areas at south of Techeng Island are the areas with low ecological risk and high ecological value, which should be treated as the prior ecological protection areas. Our study provided a priority control pattern of heavy metal pollution in TCISMR, which greatly benefits the sustainable development and resource protection in Zhanjiang Bay.展开更多
基金This work was supported by Key Program of National Natural Science Foundation of China(No.51838011)National Key Research and Development Program of China(Project No.2018YFC0704505)the Rixin Talent Program granted by Beijing University of Technology.
文摘The current scheme of building climate zones in China generally assumes that building climate zones of island cities are identical to adjacent land stations.Consequently,building design strategies for island buildings usually refer to those developed for inland cities.This approach has to some extent hindered the energy-saving design and green development of island buildings in China.This research takes a first step on this issue by defining the building climate zones of 36 marine islands over China marine area using two-stage zoning methodology adopted by current building climate zoning standard(GB50178-1993).The meteorological data used for analysis was obtained from the National Climate Center of China over the 30-year period from 1985 to 2014.As comparison,40 coastal stations which are adjacent to the inves-tigated marine islands were also included in this study.Subsequently a more obiective techni-que-cluster analysis was operated as an effective supplement to discover the climate characteristics among different observations.The results of both methodologies consistentlyshow that among the 36 islands investigated,the majority of islands located in northern and eastern marine area belong to the same climate zones as their adjacent coastal cities.Howev-er,island cities in southern marine area cannot be assigned to any current climate zone,which was demonstrated by its distinctive climate features different from any other sites investi-gated through cluster analysis as well as different energy use patterns.Thus a new zone was defined to supplement the current building climate zoning scheme to cover marine area of China.
基金jointly funded by the Research Fund Program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (No.2013K0011)the State Oceanic Administration Key Laboratory of Sea area Management Technology Fund (No.201711)+2 种基金the Guangdong MEPP Fund (No.GDOE [2019]A46)the GDNRC (No.[2020]067)the South China Sea Branch Secretary fund (No.1673)。
文摘The concentrations of five metals(Cu, Pb, Zn, Cd and Hg) were measured in sediments obtained before and after the establishment of Techeng Island Special Marine Reserves(TCISMR) in Zhanjiang Bay to evaluate the ecological risk of heavy metals. The results showed that average values of potential ecological risk indexes of heavy metals at all stations increased slightly from 32.09 to 30.54 after establishment of TCISMR. Optimal semivariance simulation showed that the contents of five heavy metals have strong spatial correlations in August 2010(before), while this correlations weakened in April 2013(after establishment of TCISMR), suggesting that the main sources of heavy metals changed. The Hakanson Risk Index(HRI) values in Donghai levee, central and southern parts of Zhanjiang harbor were high up to 60.13 and 46.46, respectively. And Zhanjiang Bay Channel, the areas around special marine reserves, the artificial reef areas and mangrove areas at south of Techeng Island are the areas with low ecological risk and high ecological value, which should be treated as the prior ecological protection areas. Our study provided a priority control pattern of heavy metal pollution in TCISMR, which greatly benefits the sustainable development and resource protection in Zhanjiang Bay.