The production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by marine microalgae was investigated to elucidate more on the role of marine phytoplankton in ocean-atmosphere interactions in the glo...The production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by marine microalgae was investigated to elucidate more on the role of marine phytoplankton in ocean-atmosphere interactions in the global biogeochemical sulfur cycle.Axenic laboratory cultures of four marine microalgae–Isochrysis galbana 8701,Pavlova viridis,Platymonas sp.and Chlorella were tested for DMSP production and conversion into DMS.Among these four microalgae,Isochrysis galbana 8701 and Pavlova viridis are two species of Haptophyta,while Chlorella and Platymonas sp.belong to Chlorophyta.The results demonstrate that the four algae can produce various amounts of DMS(P),and their DMS(P) production was species specific.With similar cell size,more DMS was released by Haptophyta than that by Chlorophyta.DMS and dissolved DMSP (DMSPd) concentrations in algal cultures varied significantly during their life cycles.The highest release of DMS appeared in the senescent period for all the four algae.Variations in DMSP concentrations were in strong compliance with variations in algal cell densities during the growing period.A highly significant correlation was observed between the DMS and DMSPd concentrations in algal cultures,and there was a time lag for the variation trend of the DMS concentrations as compared with that of the DMSPd.The consistency of variation patterns of DMS and DMSPd implies that the DMSPd produced by phytoplankton cells has a marked effect on the production of DMS.In the present study,the authors’ results specify the significant contribution of the marine phytoplankton to DMS(P) production and the importance of biological control of DMS concentrations in oceanic water.展开更多
The objective of this study was to examine the effect ofbenzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, th...The objective of this study was to examine the effect ofbenzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, these two algae were exposed to BaP for 4 days at three different concentrations including 0.5 μg L-1 (low), 3 μg L-1 (mid) and 18 μg L-1 (high). The activity of detoxi- fication enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) increased in P subcordiformis in all BaP-treated groups. In 1. zhanjiangensis, the activity of these two enzymes increased at the beginning of exposure, and then de- creased in the groups treated with mid- and high BaP. The activity of antioxidant enzyme superoxide dismutase (SOD) increased in/. zhanjiangensis in all BaP-treated groups, and then decreased in high BaP-treated group, while no significant change was observed in P subcordiformis. The activity of antioxidant enzyme catalase (CAT) increased in I. zhanjiangensis and P subcordiformis in all BaP- treated groups. The content of malondialdehyde (MDA) in Isochrysis zhanjiangensis increased first, and then decreased in high BaP-treated group, while no change occurred in P. subcordiformis. These results demonstrated that BaP significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae. The metabolic related enzymes (EROD, GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of BaP in marine water.展开更多
This study aims to quantify the effects of different pretreatment methods on the stable carbon isotope values of fatty acids in marine microalgae(Isochrysis zhanjiangenisis).To identify the effects of sample prepara...This study aims to quantify the effects of different pretreatment methods on the stable carbon isotope values of fatty acids in marine microalgae(Isochrysis zhanjiangenisis).To identify the effects of sample preparation on theδ^(13)C value and the fatty acid composition,we examined eight types of pretreatment methods including:(a) drying the sample followed by direct methyl esterification using HCl-CH3OH;(b) drying the sample followed by direct methyl esterification using H2SO4-CH3OH;(c) drying the sample by ultrasonic extraction and methylesterification using HCl-CH3OH;(d) drying the sample by ultrasonic extraction and methyl-esterification using H2SO4-CH3OH;(e) fresh sample followed by direct methyl-esterification using HCl-CH3OH;(f) fresh sample followed by direct methyl-esterification using H2SO4-CH3OH;(g) fresh sample with ultrasonic extraction followed by methyl-esterification using HCl-CH3OH,and(h) fresh sample with ultrasonic extraction followed by methylesterification using H2SO4-CH3 OH.The results show that the δ^(13)C values from Groups a-e,g and h fluctuated within 0.3‰,and the δ^(13)C values of Group f were approximately 0.7‰ lower than the other seven groups.Therefore,the different sample pretreatment methods used towards the extraction of fatty acids from marine microalgae may result in different results regarding the stable carbon isotope ratios,and if necessary a correction should be applied.展开更多
With the onset of winter, polar marine microalgae would have faced total darkness for aperiod of up to 6 months. A natural autumn community of Arctic sea ice microalgae was collected for dark survival experiments from...With the onset of winter, polar marine microalgae would have faced total darkness for aperiod of up to 6 months. A natural autumn community of Arctic sea ice microalgae was collected for dark survival experiments from the Greenland Sea during the ARKTIS-XI/2 Expedition of RV Po-larstem in October 1995. After a dark period of 161 days, species dominance in the algal assemblage have changed from initially pennate diatoms to small phytoflagellates (<20 μm). Over the entire dark period, the mean algal growth rate was - 0.01 d-1. Nearly all diatom species had negative growth rates, while phytoflagellate abundance increased. Resting spore formation during the dark period was observed in less than 4.5% of all cells and only for dinoflagellates and the diatom Chaetoceros spp. We assume that facultative heterotrophy and energy storage are the main processes enabling survival during the dark Arctic winter. After an increase in light intensity, microalgal cells reacted with fast growth within days. Phytoflagellates had the highest growth rate, followed by Nitzschia frigida. Further investigations and experiments should focus on the mechanisms of dark survival (mixotrophy and energy storage) of polar marine microalgae.展开更多
Abstract: This study investigated whether increased solar UV-B radiation (280–315 nm) could suppress the growth of marine microalgae through effects on their antioxidant systems. Two marine microalgae species, Platym...Abstract: This study investigated whether increased solar UV-B radiation (280–315 nm) could suppress the growth of marine microalgae through effects on their antioxidant systems. Two marine microalgae species, Platymonas subcordiformis (Wille) Hazen and Nitzschia closterium(Ehrenb.) W. Sm, were exposed to a range of UV-B radiation and both showed reductions in their growth rates, and the chlorophyll a (Chl a) and carotenoid (Car) contents when UV-B radiation dose increased. Superoxide anion radical (O2-.) production and the concentration of hydrogen peroxide (H2O2) and malodiadehyde (MDA) also increased with the increasing of UV-B radiation. Antioxidant systems, non-enzymic components (Car and glutathione content) and enzymic components (superoxide dismutase (SOD) and catalase (CAT) activity), decreased as a result of enhanced UV-B radiation. When the exogenous glutathione (GSH) was added, the effects of UV-B radiation on the growth of the two species were alleviated. These results suggest that enhanced UV-B radiation suppressed the antioxidant systems and caused some active oxygen species to accumulate, which in turns retarded the development of the marine microalgae.展开更多
TiO2 nanoparticles(NPs) could adversely impact aquatic ecosystems. However, the aggregation of these NPs could attenuate this effect. In this work, the biological effects of TiO2 NPs on a marine microalgae Isochrysi...TiO2 nanoparticles(NPs) could adversely impact aquatic ecosystems. However, the aggregation of these NPs could attenuate this effect. In this work, the biological effects of TiO2 NPs on a marine microalgae Isochrysis galbana were investigated. The aggregation kinetics of TiO2 NPs under different conditions was also investigated to determine and understand these effects. Results showed that, though TiO2 NPs had no obvious impact on the size and reproducibility of algal cells under testing conditions, they caused a negative effect on algal chlorophyll, which led to a reduction in photosynthesis. Furthermore, fast aggregation of TiO2 NPs occurred under all conditions, especially at the pH close to the p Hzpc. Increasing ionic strength and NP concentration also enhanced the aggregation rate.The aggregation and the following sedimentation of TiO2 NPs reduced their adverse effects on I. galbana.展开更多
We investigated the effect of CO2 enrichment and initial inoculum density on competition between Skeletonema costatum and Heterosigma akashiwo,two common algae seen in algal blooms.The initial inoculum density(0.2...We investigated the effect of CO2 enrichment and initial inoculum density on competition between Skeletonema costatum and Heterosigma akashiwo,two common algae seen in algal blooms.The initial inoculum density(0.2×104,0.4×104,0.8×104 cells/ml) had a significant effect on population growth and competition between H.akashiwo and S.costatum.The time required for population growth to reach the exponential growth phase and stationary phase decreased significantly as the initial density increased.When the two species were cultured together,S.costatum tended to outcompete H.akashiwo,especially when present at higher initial ratios.CO_2 enrichment(5 000μl/L CO_2) increased the maximum population density and carrying capacity of H.akashiwo but decreased these measures for S.costatum.Thus,CO_2 enrichment favored the growth of H.akashiwo over S.costatum.展开更多
Investigations were carried out on the bacterial flora of water and the quality of rotifers in outdoor mass culture tanks. Brachionus plicatilis and B. rotundiformis were cultured in 10 numbers of 1 tonne tanks and th...Investigations were carried out on the bacterial flora of water and the quality of rotifers in outdoor mass culture tanks. Brachionus plicatilis and B. rotundiformis were cultured in 10 numbers of 1 tonne tanks and the physico-chemical parameters and microbial loads of water, and total bacterial and Vibrio loads of microalgae and rotifers, during the period 2014-15, were studied. The study revealed a significant variation of the ammonia levels and total bacterial loads with different diets (P 〈 0.05). A positive correlation was observed between the total bacterial loads of algal concentrations and loads of rotifers, but no correlation was observed between Vibrio loads of water and rotifers. The prevalence of Vibrio loads of rotifers was low in tanks fed with Nannochloropsis oculata and maximum Vibrio loads were recorded in Chaetoceros calcitrans fed rotifers. The Vibrio loads significantly varied with days of culture and also with the algal diets. A positive correlation was observed between the total Vibrio loads of water and rotifers.展开更多
The effects of pristine polystyrene microplastics(pMPs)without any pretreatment at different concentrations(0,10,20,50,and 100 mg/L)on Phaeodactylum tricornutum Bohlin at two initial algae densities(105 and 106 cells/...The effects of pristine polystyrene microplastics(pMPs)without any pretreatment at different concentrations(0,10,20,50,and 100 mg/L)on Phaeodactylum tricornutum Bohlin at two initial algae densities(105 and 106 cells/mL)were assessed in this study.Hormesis-like effects were found when microalgae grew with pMPs.The results showed that pMPs inhibited microalgae growth under a high concentration of microplastics tolerated by individual algal cell(low initial algae density)(up to-80.189.71%)but promoted growth when the situation was opposite(up to 15.273.66%).The contents of photosynthetic pigments including chlorophyll a,chlorophyll c and carotenoids showed resistance to pMPs stress under a low initial algae density and increased with time,but the opposite was true under a high initial algae density.Compared with the low initial algae density group,Qp received less inhibition,and NPQ(heat dissipation)also decreased under the high initial algae density.Under the low initial algae density,OJIP parameters such as Sm,N,Area,Pi Abs,ѱo,φEo,TRo/RC and ETo/RC were more perturbed initially and returned to the levels of the control group(without pMPs)over time,but they remained stable throughout the experiment at high initial algae density.These results show that microplastics in the marine environment may have different toxic effects on P.tricornutum at different growth stages,which is of great significance for understanding the impact of microplastics on marine microalgae and aquatic ecosystems.展开更多
基金The National Natural Science Foundation of China under contract Nos 40525017 and 40476034the Changjiang Scholars Programme,Ministry of Education of China+1 种基金the Science and Technology Key Project of Shandong Province under contract No.2006GG2205024the "Taishan Scholar" Special Research Fund of Shandong Province,China
文摘The production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by marine microalgae was investigated to elucidate more on the role of marine phytoplankton in ocean-atmosphere interactions in the global biogeochemical sulfur cycle.Axenic laboratory cultures of four marine microalgae–Isochrysis galbana 8701,Pavlova viridis,Platymonas sp.and Chlorella were tested for DMSP production and conversion into DMS.Among these four microalgae,Isochrysis galbana 8701 and Pavlova viridis are two species of Haptophyta,while Chlorella and Platymonas sp.belong to Chlorophyta.The results demonstrate that the four algae can produce various amounts of DMS(P),and their DMS(P) production was species specific.With similar cell size,more DMS was released by Haptophyta than that by Chlorophyta.DMS and dissolved DMSP (DMSPd) concentrations in algal cultures varied significantly during their life cycles.The highest release of DMS appeared in the senescent period for all the four algae.Variations in DMSP concentrations were in strong compliance with variations in algal cell densities during the growing period.A highly significant correlation was observed between the DMS and DMSPd concentrations in algal cultures,and there was a time lag for the variation trend of the DMS concentrations as compared with that of the DMSPd.The consistency of variation patterns of DMS and DMSPd implies that the DMSPd produced by phytoplankton cells has a marked effect on the production of DMS.In the present study,the authors’ results specify the significant contribution of the marine phytoplankton to DMS(P) production and the importance of biological control of DMS concentrations in oceanic water.
基金supported by the State Oceanic Administration Specific Public Project of China (201105013)
文摘The objective of this study was to examine the effect ofbenzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, these two algae were exposed to BaP for 4 days at three different concentrations including 0.5 μg L-1 (low), 3 μg L-1 (mid) and 18 μg L-1 (high). The activity of detoxi- fication enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) increased in P subcordiformis in all BaP-treated groups. In 1. zhanjiangensis, the activity of these two enzymes increased at the beginning of exposure, and then de- creased in the groups treated with mid- and high BaP. The activity of antioxidant enzyme superoxide dismutase (SOD) increased in/. zhanjiangensis in all BaP-treated groups, and then decreased in high BaP-treated group, while no significant change was observed in P subcordiformis. The activity of antioxidant enzyme catalase (CAT) increased in I. zhanjiangensis and P subcordiformis in all BaP- treated groups. The content of malondialdehyde (MDA) in Isochrysis zhanjiangensis increased first, and then decreased in high BaP-treated group, while no change occurred in P. subcordiformis. These results demonstrated that BaP significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae. The metabolic related enzymes (EROD, GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of BaP in marine water.
基金The State Oceanic Public Welfare Project of China under contract Nos 2012418012-02 and 201305002
文摘This study aims to quantify the effects of different pretreatment methods on the stable carbon isotope values of fatty acids in marine microalgae(Isochrysis zhanjiangenisis).To identify the effects of sample preparation on theδ^(13)C value and the fatty acid composition,we examined eight types of pretreatment methods including:(a) drying the sample followed by direct methyl esterification using HCl-CH3OH;(b) drying the sample followed by direct methyl esterification using H2SO4-CH3OH;(c) drying the sample by ultrasonic extraction and methylesterification using HCl-CH3OH;(d) drying the sample by ultrasonic extraction and methyl-esterification using H2SO4-CH3OH;(e) fresh sample followed by direct methyl-esterification using HCl-CH3OH;(f) fresh sample followed by direct methyl-esterification using H2SO4-CH3OH;(g) fresh sample with ultrasonic extraction followed by methyl-esterification using HCl-CH3OH,and(h) fresh sample with ultrasonic extraction followed by methylesterification using H2SO4-CH3 OH.The results show that the δ^(13)C values from Groups a-e,g and h fluctuated within 0.3‰,and the δ^(13)C values of Group f were approximately 0.7‰ lower than the other seven groups.Therefore,the different sample pretreatment methods used towards the extraction of fatty acids from marine microalgae may result in different results regarding the stable carbon isotope ratios,and if necessary a correction should be applied.
基金This project was supported by the National Natural Science Foundation of China under contract No. 49906006.
文摘With the onset of winter, polar marine microalgae would have faced total darkness for aperiod of up to 6 months. A natural autumn community of Arctic sea ice microalgae was collected for dark survival experiments from the Greenland Sea during the ARKTIS-XI/2 Expedition of RV Po-larstem in October 1995. After a dark period of 161 days, species dominance in the algal assemblage have changed from initially pennate diatoms to small phytoflagellates (<20 μm). Over the entire dark period, the mean algal growth rate was - 0.01 d-1. Nearly all diatom species had negative growth rates, while phytoflagellate abundance increased. Resting spore formation during the dark period was observed in less than 4.5% of all cells and only for dinoflagellates and the diatom Chaetoceros spp. We assume that facultative heterotrophy and energy storage are the main processes enabling survival during the dark Arctic winter. After an increase in light intensity, microalgal cells reacted with fast growth within days. Phytoflagellates had the highest growth rate, followed by Nitzschia frigida. Further investigations and experiments should focus on the mechanisms of dark survival (mixotrophy and energy storage) of polar marine microalgae.
基金国家自然科学基金,Encouraging Foundation for Outstanding Youth Scientists of Shandong Province
文摘Abstract: This study investigated whether increased solar UV-B radiation (280–315 nm) could suppress the growth of marine microalgae through effects on their antioxidant systems. Two marine microalgae species, Platymonas subcordiformis (Wille) Hazen and Nitzschia closterium(Ehrenb.) W. Sm, were exposed to a range of UV-B radiation and both showed reductions in their growth rates, and the chlorophyll a (Chl a) and carotenoid (Car) contents when UV-B radiation dose increased. Superoxide anion radical (O2-.) production and the concentration of hydrogen peroxide (H2O2) and malodiadehyde (MDA) also increased with the increasing of UV-B radiation. Antioxidant systems, non-enzymic components (Car and glutathione content) and enzymic components (superoxide dismutase (SOD) and catalase (CAT) activity), decreased as a result of enhanced UV-B radiation. When the exogenous glutathione (GSH) was added, the effects of UV-B radiation on the growth of the two species were alleviated. These results suggest that enhanced UV-B radiation suppressed the antioxidant systems and caused some active oxygen species to accumulate, which in turns retarded the development of the marine microalgae.
基金supported by the China Scholarship Council through a State-Sponsored Scholarship Program, NSF of China (No. 21307019)the Public Science and Technology Research Fund Projects of Ocean (No. 201505034)+2 种基金the Zhejiang Provincial Natural Science Foundation (Nos. LY14D060007 and LQ16D060006)National Key Research and Development Program (No. 2016YFC1402405)support from the Environment Research Center (ERC) at the Missouri University of Science and Technology, Rolla, Missouri, USA
文摘TiO2 nanoparticles(NPs) could adversely impact aquatic ecosystems. However, the aggregation of these NPs could attenuate this effect. In this work, the biological effects of TiO2 NPs on a marine microalgae Isochrysis galbana were investigated. The aggregation kinetics of TiO2 NPs under different conditions was also investigated to determine and understand these effects. Results showed that, though TiO2 NPs had no obvious impact on the size and reproducibility of algal cells under testing conditions, they caused a negative effect on algal chlorophyll, which led to a reduction in photosynthesis. Furthermore, fast aggregation of TiO2 NPs occurred under all conditions, especially at the pH close to the p Hzpc. Increasing ionic strength and NP concentration also enhanced the aggregation rate.The aggregation and the following sedimentation of TiO2 NPs reduced their adverse effects on I. galbana.
基金Supported by the Specialized Research Program for Marine Public Welfare Industry,SOA(No.200805066)
文摘We investigated the effect of CO2 enrichment and initial inoculum density on competition between Skeletonema costatum and Heterosigma akashiwo,two common algae seen in algal blooms.The initial inoculum density(0.2×104,0.4×104,0.8×104 cells/ml) had a significant effect on population growth and competition between H.akashiwo and S.costatum.The time required for population growth to reach the exponential growth phase and stationary phase decreased significantly as the initial density increased.When the two species were cultured together,S.costatum tended to outcompete H.akashiwo,especially when present at higher initial ratios.CO_2 enrichment(5 000μl/L CO_2) increased the maximum population density and carrying capacity of H.akashiwo but decreased these measures for S.costatum.Thus,CO_2 enrichment favored the growth of H.akashiwo over S.costatum.
文摘Investigations were carried out on the bacterial flora of water and the quality of rotifers in outdoor mass culture tanks. Brachionus plicatilis and B. rotundiformis were cultured in 10 numbers of 1 tonne tanks and the physico-chemical parameters and microbial loads of water, and total bacterial and Vibrio loads of microalgae and rotifers, during the period 2014-15, were studied. The study revealed a significant variation of the ammonia levels and total bacterial loads with different diets (P 〈 0.05). A positive correlation was observed between the total bacterial loads of algal concentrations and loads of rotifers, but no correlation was observed between Vibrio loads of water and rotifers. The prevalence of Vibrio loads of rotifers was low in tanks fed with Nannochloropsis oculata and maximum Vibrio loads were recorded in Chaetoceros calcitrans fed rotifers. The Vibrio loads significantly varied with days of culture and also with the algal diets. A positive correlation was observed between the total Vibrio loads of water and rotifers.
基金This study was supported by the National Natural Science Foundation of China(No.52071030)Science and Technology Program of Henan Province(No.132102310498).
文摘The effects of pristine polystyrene microplastics(pMPs)without any pretreatment at different concentrations(0,10,20,50,and 100 mg/L)on Phaeodactylum tricornutum Bohlin at two initial algae densities(105 and 106 cells/mL)were assessed in this study.Hormesis-like effects were found when microalgae grew with pMPs.The results showed that pMPs inhibited microalgae growth under a high concentration of microplastics tolerated by individual algal cell(low initial algae density)(up to-80.189.71%)but promoted growth when the situation was opposite(up to 15.273.66%).The contents of photosynthetic pigments including chlorophyll a,chlorophyll c and carotenoids showed resistance to pMPs stress under a low initial algae density and increased with time,but the opposite was true under a high initial algae density.Compared with the low initial algae density group,Qp received less inhibition,and NPQ(heat dissipation)also decreased under the high initial algae density.Under the low initial algae density,OJIP parameters such as Sm,N,Area,Pi Abs,ѱo,φEo,TRo/RC and ETo/RC were more perturbed initially and returned to the levels of the control group(without pMPs)over time,but they remained stable throughout the experiment at high initial algae density.These results show that microplastics in the marine environment may have different toxic effects on P.tricornutum at different growth stages,which is of great significance for understanding the impact of microplastics on marine microalgae and aquatic ecosystems.