Data on discrete,isolated attributes of the marine economy are often used in traditional marine economic research.However,as the focus of urban research shifts from internal static attributes to external dynamic linka...Data on discrete,isolated attributes of the marine economy are often used in traditional marine economic research.However,as the focus of urban research shifts from internal static attributes to external dynamic linkages,the importance of marine economic net-work research is beginning to emerge.The construction of the marine economic network in China’s coastal areas is necessary to change the flow of land and sea resources and optimize regional marine economic development.Employing data from headquarters and branches of sea-related A-share listed enterprises to construct the marine economic network in China,we use social network analysis(SNA)to discuss the characteristics of its evolution as of 2010,2015,and 2020 and its governance.The following results were obtained.1)In terms of topological characteristics,the scale of the marine economic network in China’s coastal areas has accelerated and expan-ded,and the connections have become increasingly close;thus,this development has complex network characteristics.2)In terms of spatial structure,the intensity of the connection fluctuates and does not form stable development support;the group structure gradually becomes clear,but the overall pattern is fragmented;there are spatial differences in marine economic agglomeration radiation;the radi-ation effect of the eastern marine economic circle is obvious;and the polarization effect of northern and southern marine economic circles is significant.On this basis,we construct a framework for the governance of a marine economic network with the market,the government,and industry as the three governing bodies.By clarifying the driving factors and building objectives of marine economic network construction,this study aims to foster the high-quality development of China’s marine economy.展开更多
In marine wireless sensor networks(MWSNs),an appropriate routing protocol is the key to the collaborative collection and efficient transmission of massive data.However,designing an appropriate routing protocol under t...In marine wireless sensor networks(MWSNs),an appropriate routing protocol is the key to the collaborative collection and efficient transmission of massive data.However,designing an appropriate routing protocol under the condition of sparse marine node deployment,highly dynamic network topology,and limited node energy is complicated.Moreover,the absence of continuous endto-end connection introduces further difficulties in the design of routing protocols.In this case,we present a novel energy-efficient opportunistic routing(Novel Energy-Efficient Opportunistic Routing,NEOR)protocol for MWSNs that is based on compressed sensing and power control.First,a lightweight time-series prediction method-weighted moving average method is proposed to predict the packet advancement value such that the number of location information that is exchanged among a node and its neighbor nodes can be minimized.Second,an adaptive power control mechanism is presented to determine the optimal transmitting power and candidate nodeset on the basis of node mobility,packet advancement,communication link quality,and remaining node energy.Subsequently,a timer-based scheduling algorithm is utilized to coordinate packet forwarding to avoid packet conflict.Furthermore,we introduce the compressed sensing theory to compress perceptual data at source nodes and reconstruct the original data at sink nodes.Therefore,energy consumption in the MWSNs is greatly reduced due to the decrease in the amount of data perception and transmission.Numerical simulation experiments are carried out in a wide range of marine scenarios to verify the superiority of our approach over selected benchmark algorithms.展开更多
Marine data buoy can provide a long-term, continuous, real-time, reliable data of ocean observation in a variety of complex marine environment. It is one of the most reliable, most effective and important means of oce...Marine data buoy can provide a long-term, continuous, real-time, reliable data of ocean observation in a variety of complex marine environment. It is one of the most reliable, most effective and important means of ocean monitoring technology. In this paper, the classification, main theory and technology system of marine data buoy are summarized. The typical technological breakthrough of the development of marine data buoy in recent years is summarized. The composition and application of marine monitoring network in China was introduced, and the gap between the technology of China's marine data buoy and the international advanced countries is compared.Combined on the situation and demand of China's current situation and needs, the development trend of marine data buoy and buoy monitoring network are expected.展开更多
Monitoring programs for nesting turtles around the world have been important to build up a matrix of information for better comprehension of their behaviour and dispersion. The Western Indian Ocean has several monitor...Monitoring programs for nesting turtles around the world have been important to build up a matrix of information for better comprehension of their behaviour and dispersion. The Western Indian Ocean has several monitoring programs that are being used to reveal migration routes, phylogenetic interconnections and nesting behaviour patterns. We determined the nesting parameters for 69 records of hawksbill turtles collected during the Vamizi Island monitoring program. We also determined carapace measurements parameters of the turtles caught by fishermen in the area and give some considerations to improve the conservation of this species. Results show that the island receives hawksbill females all year long. Vamizi is a small nesting ground for this species, with an incubation period of 60.9 ± 10.6 days and a high reproductive rate. The turtles’ carapace measurements (SCL 42.0 ± SD 9.0 cm) revealed the existence of young individuals, foraging near the island, and their vulnerability to the fishing practices. This study strongly defends the need to identify more developmental and nesting spots, to be protected near Vamizi, to establish a solid network of marine reserves and corridors in the north of the Mozambique Channel.展开更多
基金Under the auspices of the Key Research Base of Humanities and Social Sciences of the Ministry of Education of China(No.22JJD790029)。
文摘Data on discrete,isolated attributes of the marine economy are often used in traditional marine economic research.However,as the focus of urban research shifts from internal static attributes to external dynamic linkages,the importance of marine economic net-work research is beginning to emerge.The construction of the marine economic network in China’s coastal areas is necessary to change the flow of land and sea resources and optimize regional marine economic development.Employing data from headquarters and branches of sea-related A-share listed enterprises to construct the marine economic network in China,we use social network analysis(SNA)to discuss the characteristics of its evolution as of 2010,2015,and 2020 and its governance.The following results were obtained.1)In terms of topological characteristics,the scale of the marine economic network in China’s coastal areas has accelerated and expan-ded,and the connections have become increasingly close;thus,this development has complex network characteristics.2)In terms of spatial structure,the intensity of the connection fluctuates and does not form stable development support;the group structure gradually becomes clear,but the overall pattern is fragmented;there are spatial differences in marine economic agglomeration radiation;the radi-ation effect of the eastern marine economic circle is obvious;and the polarization effect of northern and southern marine economic circles is significant.On this basis,we construct a framework for the governance of a marine economic network with the market,the government,and industry as the three governing bodies.By clarifying the driving factors and building objectives of marine economic network construction,this study aims to foster the high-quality development of China’s marine economy.
基金supported by the National Natural Science Foundation of China(Nos.52201403,52201401,52071200,52102397,61701299,51709167)the National Key Research and Development Program(No.2021YFC2801002)+4 种基金the China Postdoctoral Science Foundation(Nos.2021M 700790,2022M712027)the Fund of National Engineering Research Center for Water Transport Safety(No.A2022003)the Foundation for Jiangsu Key Laboratory of Traffic and Transportation Security(No.TTS2021-05)the Fund of Hubei Key Laboratory of Inland Shipping Technology(No.NHHY2021002)the Top-Notch Innovative Program for Postgraduates of Shanghai Maritime University(Nos.2019YBR006,2019YBR002).
文摘In marine wireless sensor networks(MWSNs),an appropriate routing protocol is the key to the collaborative collection and efficient transmission of massive data.However,designing an appropriate routing protocol under the condition of sparse marine node deployment,highly dynamic network topology,and limited node energy is complicated.Moreover,the absence of continuous endto-end connection introduces further difficulties in the design of routing protocols.In this case,we present a novel energy-efficient opportunistic routing(Novel Energy-Efficient Opportunistic Routing,NEOR)protocol for MWSNs that is based on compressed sensing and power control.First,a lightweight time-series prediction method-weighted moving average method is proposed to predict the packet advancement value such that the number of location information that is exchanged among a node and its neighbor nodes can be minimized.Second,an adaptive power control mechanism is presented to determine the optimal transmitting power and candidate nodeset on the basis of node mobility,packet advancement,communication link quality,and remaining node energy.Subsequently,a timer-based scheduling algorithm is utilized to coordinate packet forwarding to avoid packet conflict.Furthermore,we introduce the compressed sensing theory to compress perceptual data at source nodes and reconstruct the original data at sink nodes.Therefore,energy consumption in the MWSNs is greatly reduced due to the decrease in the amount of data perception and transmission.Numerical simulation experiments are carried out in a wide range of marine scenarios to verify the superiority of our approach over selected benchmark algorithms.
基金Taishan Scholars Construction Project Special Funds of Shandong Province
文摘Marine data buoy can provide a long-term, continuous, real-time, reliable data of ocean observation in a variety of complex marine environment. It is one of the most reliable, most effective and important means of ocean monitoring technology. In this paper, the classification, main theory and technology system of marine data buoy are summarized. The typical technological breakthrough of the development of marine data buoy in recent years is summarized. The composition and application of marine monitoring network in China was introduced, and the gap between the technology of China's marine data buoy and the international advanced countries is compared.Combined on the situation and demand of China's current situation and needs, the development trend of marine data buoy and buoy monitoring network are expected.
文摘Monitoring programs for nesting turtles around the world have been important to build up a matrix of information for better comprehension of their behaviour and dispersion. The Western Indian Ocean has several monitoring programs that are being used to reveal migration routes, phylogenetic interconnections and nesting behaviour patterns. We determined the nesting parameters for 69 records of hawksbill turtles collected during the Vamizi Island monitoring program. We also determined carapace measurements parameters of the turtles caught by fishermen in the area and give some considerations to improve the conservation of this species. Results show that the island receives hawksbill females all year long. Vamizi is a small nesting ground for this species, with an incubation period of 60.9 ± 10.6 days and a high reproductive rate. The turtles’ carapace measurements (SCL 42.0 ± SD 9.0 cm) revealed the existence of young individuals, foraging near the island, and their vulnerability to the fishing practices. This study strongly defends the need to identify more developmental and nesting spots, to be protected near Vamizi, to establish a solid network of marine reserves and corridors in the north of the Mozambique Channel.