期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The research of typical microbial functional group reveals a new oceanic carbon sequestration mechanism——A case of innovative method promoting scientific discovery 被引量:3
1
作者 ZHANG Fei LIU Ji Hua +2 位作者 LI Qiang ZOU Li Jie ZHANG Yao 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第3期456-463,共8页
Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability o... Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability of harvesting light energy and wide distribution, and appear to have a particular role in the ocean's carbon cycling. Yet the global pattern of AAPB distribution was controversial at the beginning of the 21 st century due to the defects of the AAPB enumeration methods. An advanced time-series observation-based infrared epifluorescence microscopy(TIREM) approach was established to amend the existing AAPB quantitative deviation and led to the accurate enumeration of AAPB in marine environments. The abundance of AAPB and AAPB% were higher in coastal and continental shelf waters than in oceanic waters, which does not support the idea that AAPB are specifically adapted to oligotrophic conditions due to photosynthesis in AAPB acting a supplement to their organic carbon respiration. Further investigation revealed that dependence of AAPB on dissolved organic carbon produced by phytoplankton(PDOC) may limit their competition and control AAPB distribution. So, the selection of carbon sources by AAPB indicated that they can effectively fractionate the carbon flow in the sea. Enlightened by these findings, the following studies on the interactions between marine microbes and DOC led to the discovery of a new mechanism of marine carbon sequestration—the Microbial Carbon Pump(MCP). The conceptual framework of MCP addresses the sources and mechanism of the vast DOC reservoir in the ocean and represents a breakthrough in the theory of ocean carbon sequestration. 展开更多
关键词 marine microbes Aerobic anoxygenic phototrophic bacteria Time-series observation-based infrared epifluores cence microscopy Microbial Carbon pump marine Carbon Cycling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部