According to the characteristics of gravity passive navigation, this paper presents a novel gravity passive navigation system (GPNS), which consists of the rate azimuth platform (RAP), gravity sensor, digitally st...According to the characteristics of gravity passive navigation, this paper presents a novel gravity passive navigation system (GPNS), which consists of the rate azimuth platform (RAP), gravity sensor, digitally stored gravity maps, depth sensor and relative log. The algorithm of rate azimuth platform inertial navigation system, error state-space equations, measurement equations and GPNS optimal filter are described. In view of the measurements made by an onboard gravity sensor the Eotvos effect is introduced in the gravity measurement equation of a GPNS optimal filter. A GPNS is studied with the Matlab/Simulink tools; simulation results demonstrate that a GPNS has small errors in platform attitude and position. Because the inertial navigation platform is the rate azimuth platform in the GPNS and gravity sensor is mounted on the rate azimuth platform, the cost of the GPNS is lower than existing GPNS's and according to the above results the GPNS meets the need to maintain accuracy navigation for underwater vehicles over long intervals.展开更多
HY-2 A(Haiyang-2 A),launched in 2011,is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads.HY-2 A shifted the drift orbit in March 2016 and has...HY-2 A(Haiyang-2 A),launched in 2011,is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads.HY-2 A shifted the drift orbit in March 2016 and has been accumulating geodetic mission(GM)data for more than three years with 168-day cycle.In this paper,we present the preliminary gravity field inverted by the HY-2 A/GM data from March 2016 to December 2017 near Taiwan(21°–26°N,119°–123°E).The gravity anomaly is computed by Inverse Vening Meinesz(IVM)formula with a onedimensional FFT method during remove-restore procedure with the EGM2008 gravity model as the reference field.For comparison,CryoSat-2 altimeter data are used to inverse the gravity field near Taiwan Island by the same method.Comparing with the gravity field derived from CryoSat-2,a good agreement between the two data sets is found.The global ocean gravity models and National Geophysical Data Center(NGDC)shipboard gravity data also are used to assess the performance of HY-2 A/GM data.The evaluations show that HY-2 A and CryoSat-2 are at the same level in terms of gravity field recovery and the HY-2 A/GM altimeter-derived gravity field has an accuracy of 2.922 mGal.Therefore,we can believe that HY-2 A will be a new reliable data source for marine gravity field inversion and has the potentiality to improve the accuracy and resolution of the global marine gravity field.展开更多
The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the ...The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.展开更多
At present, new integrated navigation, which usesthe location function of reference gravity anomaly map to control the errors of the inertial navigation system (INS), has been developed in marine navigation. It is nam...At present, new integrated navigation, which usesthe location function of reference gravity anomaly map to control the errors of the inertial navigation system (INS), has been developed in marine navigation. It is named the gravity-aided INS. Both the INS and real-time computation of gravity anomalies need a 3-D marine normal gravity model. Conventionally, a reduction method applied in geophysical survey is directiy introduced to observed data processing. This reduction does not separate anomaly from normal gravity in the observed data, so errors cannot be avoided. The 3-D marine normal gravity model was derived from the J2 gravity model, and is suitable for the region whose depth is less than 1000 m.展开更多
Based upon a discussion on the merits and limitations of proportional navigation(PN)guidance law in which constant gravity compensation is included as a part,a counterpart having varying compensations,which changes ...Based upon a discussion on the merits and limitations of proportional navigation(PN)guidance law in which constant gravity compensation is included as a part,a counterpart having varying compensations,which changes with pitching angle and line-of-sight angle,is substituted.Flight trajectory simulation over a submissile model is conducted,resulting in increased impact angle,shorter miss distance,smaller maximum normal overload and narrower terminal angle of attack.展开更多
Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital mo...Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital model and the resolution is 2’ × 2’,a filter model based on vehicle position is derived and the particularity of inertial navigation system(INS) output is employed to estimate a parameter in the system model. Meanwhile, the matching algorithm based on point mass filter(PMF) is applied and several optimal selection strategies are discussed. It is obtained that the point mass filter algorithm based on the deterministic resampling method has better practicability. The reliability and the accuracy of the algorithm are verified via simulation tests.展开更多
Territorial water is a significant part of national sovereignty of China,thus the infrastructures of national space datum and location services should cover the sea areas except for the land areas.China has establishe...Territorial water is a significant part of national sovereignty of China,thus the infrastructures of national space datum and location services should cover the sea areas except for the land areas.China has established relatively complete geodetic coordinate frame in land areas over the past decades,including the lastest developed China Geodetic Coordinate System 2000(CGCS 2000)with its reference frame and the national gravity datum 2000.However,the currently used geodetic infrastructures have not well covered the sea areas of China.The marine geodetic datum and marine navigation technologies need to be further developed and extended to satisfy the national demands of marine environment and resources detection,scientific investigation as well as marine economy development in new era of China.This paper mainly reviews the development and the progress of Chinese marine geodetic datum and marine navigation,analyses related key technologies in establishing our national marine geodetic datum.Some current trends and future directions for independently developing our national marine geodetic datum and marine navigation technologies are discussed.展开更多
Waves are the most important phenomena affecting marine navigation, either in the field of fishing, military or transporting of goods. This paper tries to answer the following important questions: What are the causes ...Waves are the most important phenomena affecting marine navigation, either in the field of fishing, military or transporting of goods. This paper tries to answer the following important questions: What are the causes and types of waves in the coast of Zuaracity? What are their characteristics? And how do those waves affect the marine navigation and human activities on this coast? The research finds significant results devoted in that: the coast is exposed to on type of waves;wind waves. Zuara coast has never been exposed to waves of Tsunami or landslides. The largest size of the wave forms in winter season due to the wind of north-west which is the fastest wind type that the Libyan coast is exposed to. However, the highest speed is up to 65 knots accompanied with waves reach a height of more than 7 meters. The research also classifies the wind speeds that lead to cancelling ships and boats trips that depend on this work is studying the waves in Zuara coast and the relationship with the waves of Libyan coast and Mediterranean sea. Also, it focuses on the effect of waves on boat speed, design, fuel consumption, and other effects.展开更多
Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval i...Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval in matching trajectory is addressed by an unequal-interval data fusion algorithm which is based on the unequal-interval characteristics analysis of the matching trajectory.Compared with previously available methods,the proposed algorithm improves the location precision.In conclusion,simulations of the integrated navigation system demonstrated the effectiveness and superiority of the proposed algorithm.展开更多
A new gravity sensor based on electromagnetic damping for the JMGrav marine gravimeter is presented.The new gravity sensor considered the advanced construction methods of the electromagnetic damping system of the grav...A new gravity sensor based on electromagnetic damping for the JMGrav marine gravimeter is presented.The new gravity sensor considered the advanced construction methods of the electromagnetic damping system of the gravimeter.The design features of the new system are discussed and the research survey data in the South China Sea are shown.Numerical simulations are applied to model the magnetic and mechanical characteristics of the system using finite element analysis and to evaluate the force distribution and the resulting damping effects.The performance characteristics of the system were tested on a motion simulator in laboratory,and the gravimeter was subjected to vertical accelerations of up to 100 Gal in 1-1000 s.It was found that the amplitude reduction of vertical accelerations in 3-15 s is 30-45 dB,with a time lag of 2-5 s,while the effect on gravity in period greater than 600 s is less than 0.5 dB,with a time lag of less than 100 s.The accelerations cause discrepancies of approximately only 1 mGal between the static value and the mean dynamic value.The sea tests were conducted in September 2020.Gravity measurements were taken with a JMGrav marine gravimeter onboard the R/V Dongfanghong 3,and the effective survey line exceeded 2000 km.Completely irregular accelerations with peaks up to 100 Gal yielded a reduction of approximately 40 dB in amplitude.The survey data were evaluated using ocean gravity field models and grid line tests.The results show that the accuracy of the gravity measurements is better than 2 mGal.展开更多
The conventional dynamic approach for gravity filed modelling has been implemented in the PANDA(Position and Navigation Data Analyst) software. A variant of the so-called ’two-step’ method for gravity field modellin...The conventional dynamic approach for gravity filed modelling has been implemented in the PANDA(Position and Navigation Data Analyst) software. A variant of the so-called ’two-step’ method for gravity field modelling is adopted for this purpose, where the GRACE(Gravity Recovery and Climate Experiment)orbits are derived from the GPS(Global Positioning System) data in a first step followed by a simultaneous determination of dynamic orbit and gravity filed from the GPS-derived orbits and K-band rangerate measurements in a second step. In this way, the monthly gravity field solutions complete to degree and order 96 are produced for the period Jan. 2005 to Dec. 2010. Their performance is assessed by comparing them with the official solutions, i.e., CSR RL05, GFZ RL05 a and JPL RL05. A comparison in the spectral domain in terms of geoid heights reveals that the obtained solutions present the smallest degree amplitudes at degree 30-75. A further analysis of mass changes in the spatial domain demonstrates that the main signals observed from the obtained solutions are in great agreement with those from the official solutions. Remarkably, the correlation coefficients of mass changes in large river basins from the official solutions with respect to those from the obtained solutions are all above 0.97. These results demonstrate that the obtained solutions are comparable to the official solutions.展开更多
The normal gravity model of a hypersonic boost-glide vehicle in near space is studied in this paper with the aim of alleviating the influence of the gravity model error on the precision of the inertial navigation syst...The normal gravity model of a hypersonic boost-glide vehicle in near space is studied in this paper with the aim of alleviating the influence of the gravity model error on the precision of the inertial navigation system(INS)during flight.First,a spherical harmonic model of the Earth’s gravitational field is introduced and the normal gravity of the Earth is derived from it.Then,the coordinate transformation needed for the application of the gravity model to the near-space navigation algorithm is formulated.Subsequently,the gravity disturbance in near space and the impact of J_(2)and J_(4)gravity truncation errors are analyzed.Finally,different normal gravity models and different precisions of inertial measurement unit(IMU)are exploited to simulate the near-space navigation algorithm.Based on this,the influence of the independent and combined effects caused by the interference factors is analyzed,and the applicable conditions of the normal gravity model are discussed.展开更多
Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic p...Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic process inside the Earth.Over the years,a variety of technical means have been used to detect the Earth’s gravity field and supported numerous studies on the global change,resource detection,geological structure movement,water resources change and other related fields of research.Here is part of the progress in surface and marine gravimetry obtained by Chinese geodesy scientists from 2019 to 2023 from the following aspects,including:①Continuous gravity network in Chinese mainland;②Application of superconducting gravity measurement;③Network adjustment for continental-scale gravity survey campaign and data quality control;④Regional time-variable gravity field and its application;⑤Research progress on novel technologies for gravity inversion;⑥Research progress on marine gravity field determination;⑦Application research on marine gravity field.展开更多
The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is...The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is critical for the research on the tectonic evolution of marginal seas in the Western Pacific Ocean.However,only few studies have been completed on the southern part,and the geophysical fields and deep structures in this part are not well understood.Given this,this study finely depicts the characteristics of the gravity and magnetic anomalies and extracts information on deep structures in the southern part of the KPR based on the gravity and magnetic data obtained from the 11th expedition of the deep-sea geological survey of the Western Pacific Ocean conducted by the Guangzhou Marine Geological Survey,China Geological Survey using the R/V Haiyangdizhi 6.Furthermore,with the data collected on the water depth,sediment thickness,and multichannel seismic transects as constraints,a 3D density model and Moho depths of the study area were obtained using 3D density inversion.The results are as follows.(1)The gravity and magnetic anomalies in the study area show distinct zoning and segmentation.In detail,the gravity and magnetic anomalies to the south of 11°N of the KPR transition from high-amplitude continuous linear positive anomalies into low-amplitude intermittent linear positive anomalies.In contrast,the gravity and magnetic anomalies to the north of 11°N of the KPR are discontinuous and show alternating positive and negative anomalies.These anomalies can be divided into four sections,of which the separation points correspond well to the locations of deep faults,thus,revealing different field-source attributes and tectonic genesis of the KPR.(2)The Moho depth in the basins in the study area is 6-12 km.The Moho depth in the southern part of KPR show segmentation.Specifically,the depth is 10‒12 km to the north of 11°N,12‒14 km from 9.5°N to 11°N,14-16 km from 8.5°N to 9.5°N,and 16‒25 km in the Palau Islands.(3)The KPR is a remnant intra-oceanic arc with the oceanic-crust basement.which shows noticeably discontinuous from north to south in geological structure and is intersected by NEE-trending lithospheric-scale deep faults.With large and deep faults F3 and F1(the Mindanao fault)as boundaries overall,the southern part of the KPR can be divided into three zones.In detail,the portion to the south of 8.5°N(F3)is a tectonically active zone,the KPR portion between 8.5°N and 11°N is a tectonically active transition zone,and the portion to the north of 11°N is a tectonically inactive zone.(4)The oceanic crust in the KPR is slightly thicker than that in the basins on both sides of the ridge,and it is inferred that the KPR formed from the thickening of the oceanic crust induced by the upwelling of deep magma in the process of rifting of remnant arcs during the Middle Oligocene.In addition,it is inferred that the thick oceanic crust under the Palau Islands is related to the constant upwelling of deep magma induced by the continuous northwestward subduction of the Caroline Plate toward the Palau Trench since the Late Oligocene.This study provides a scientific basis for systematically understanding the crustal attributes,deep structures,and evolution of the KPR.展开更多
The International Maritime Organization (IMO) has encouraged its member countries to introduce Formal Safety Assessment (FSA) for ship operations since the end of the last century. FSA can be used through certain form...The International Maritime Organization (IMO) has encouraged its member countries to introduce Formal Safety Assessment (FSA) for ship operations since the end of the last century. FSA can be used through certain formal assessing steps to generate effective recommendations and cautions to control marine risks and improve the safety of ships. On the basis of the brief introduction of FSA, this paper describes the ideas of applying FSA to the prevention of human error in ship operations. It especially discusses the investigation and analysis of the information and data using navigation simulators and puts forward some suggestions for the introduction and development of the FSA research work for safer ship operations.展开更多
Marine geophysical survey by the Chinese National Antarctic Research Expedition (CHINARE) began with the first science expedition in 1984/1985, although only four cruises were performed in the vicinity of the Antar...Marine geophysical survey by the Chinese National Antarctic Research Expedition (CHINARE) began with the first science expedition in 1984/1985, although only four cruises were performed in the vicinity of the Antarctic Peninsula between then and 1991/1992. After a 20 year hiatus, Antarctic marine geophysical research was relaunched by the Chinese Polar Environmental Comprehensive Investigation and Assessment Programs (known simply as the Chinese Polar Program) in 2011/2012. Integrated geophysical surveys have been carried out annually since, in Prydz Bay and the Ross Sea. During the last 5 years, we have acquired about 5500 km of bathymetric, gravimetric, and magnetic lines; more than 1800 km of seismic reflection lines; and data from several heat flow and Ocean Bottom Seismometer (OBS) stations. This work has deepened understandings of geophysical features and their implications for geological tectonics and glacial history in Antarctica and its surrounding seas. Compiled Antarctic Bouguer and Airy isostatic gravity anomalies show different features of tectonics between the East Antarctic stability and West Antarctic activity. Calculated magnetic anomalies, heat flow anomalies and lithospheric anisotropy offshore of Prydz Bay may imply high heat capacity of mantle shielded by the continental shelf lithosphere, but high heat dissipation of mantle due to the Cretaceous breakup of Gondwana along the continent and ocean transition (COT), where large sediment ridges would be brought about by the Oligocene ice sheet retreat and would enlarge free-air gravity anomalies. In the western Ross Sea, CHINARE seismic profiles indicate northern termination of the Terror Rift and deposition time of the grounding zone wedge in the northern JOIDES Basin.展开更多
The intersection of the Kyushu-Palau Ridge(KPR)and the Central Basin Rift(CBR)of the West Philippine Basin(WPB)is a relic of a trench-trench-rift(TTR)type triple-junction,which preserves some pivotal information on th...The intersection of the Kyushu-Palau Ridge(KPR)and the Central Basin Rift(CBR)of the West Philippine Basin(WPB)is a relic of a trench-trench-rift(TTR)type triple-junction,which preserves some pivotal information on the cessation of the seafloor spreading of the WPB,the emplacement and disintegration of the proto-Izu-Bonin-Mariana(IBM)Arc,and the transition from initial rifting to steady-state spreading of the Parece Vela Basin(PVB).However,the structural characteristics of this triple-junction have not been thoroughly understood.In this paper,using the newly acquired multi-beam bathymetric,gravity,and magnetic data obtained by the Qingdao Institute of Marine Geology,China Geological Survey,the authors depict the topographic,gravity,and magnetic characteristics of the triple-junction and adjacent region.Calculations including the upward continuations and total horizontal derivatives of gravity anomaly are also performed to highlight the major structural features and discontinuities.Based on these works,the morphological and structural features and their formation mechanisms are analyzed.The results show that the last episode amagmatic extension along the CBR led to the formation of a deep rift valley,which extends eastward and incised the KPR.The morphological and structural fabrics of the KPR near and to the south of the triple-junction are consistent with those of the western PVB,manifesting as a series of NNE-SSW-and N-S-trending ridges and troughs,which were produced by the extensional faults associated with the initial rifting of the PVB.The superposition of the above two reasons induced the prominent discontinuity of the KPR in deep and shallow crustal structures between 15°N‒15°30′N and 13°30′N‒14°N.Combined with previous authors’results,we propose that the stress produced by the early spreading of the PVB transmitted westward and promoted the final stage amagmatic extension of the CBR.The eastward propagation of the CBR destroyed the KPR,of which the magmatism had decayed or ceased at that time.The destruction mechanism of the KPR associated with the rifting of the PVB varies along strike the KPR.Adjacent to the triple-junction,the KPR was destroyed mainly due to the oblique intersection of the PVB rifting center.Whereas south of the triple-junction,the KPR was destroyed by the E-W-directional extensional faulting on its whole width.展开更多
As a classic deep learning target detection algorithm,Faster R-CNN(region convolutional neural network)has been widely used in high-resolution synthetic aperture radar(SAR)and inverse SAR(ISAR)image detection.However,...As a classic deep learning target detection algorithm,Faster R-CNN(region convolutional neural network)has been widely used in high-resolution synthetic aperture radar(SAR)and inverse SAR(ISAR)image detection.However,for most common low-resolution radar plane position indicator(PPI)images,it is difficult to achieve good performance.In this paper,taking navigation radar PPI images as an example,a marine target detection method based on the Marine-Faster R-CNN algorithm is proposed in the case of complex background(e.g.,sea clutter)and target characteristics.The method performs feature extraction and target recognition on PPI images generated by radar echoes with the convolutional neural network(CNN).First,to improve the accuracy of detecting marine targets and reduce the false alarm rate,Faster R-CNN was optimized as the Marine-Faster R-CNN in five respects:new backbone network,anchor size,dense target detection,data sample balance,and scale normalization.Then,JRC(Japan Radio Co.,Ltd.)navigation radar was used to collect echo data under different conditions to build a marine target dataset.Finally,comparisons with the classic Faster R-CNN method and the constant false alarm rate(CFAR)algorithm proved that the proposed method is more accurate and robust,has stronger generalization ability,and can be applied to the detection of marine targets for navigation radar.Its performance was tested with datasets from different observation conditions(sea states,radar parameters,and different targets).展开更多
Based on the concept of Global Position System(GPS)/leveling,the satellite altimetry leveling(SAL) is first proposed to evaluate the marine geoid.SAL is derived by the difference among the mean sea surface(MSS),mean d...Based on the concept of Global Position System(GPS)/leveling,the satellite altimetry leveling(SAL) is first proposed to evaluate the marine geoid.SAL is derived by the difference among the mean sea surface(MSS),mean dynamic ocean topography(MDT),and leveling origin.In this study,(1) the original satellite altimetry data are processed to infer the vertical deflection and gravity anomaly,(2) the Chinese coastal marine geoids(CMG) are determined by using the differe nt methods(including Molodensky,least square collocation,Stokes formula,and two-dimensional fast Fourier transformation(FFT) with the vertical deflection and gravity anomaly data),(3) CMG are evaluated by using the results from above different methods,the Gravity field and steady-state Ocean Circulation Explorer(GOCE) gravity potential model(GGPM),and SAL.The results show that(1) CMG from the Molodensky method has the highest precision by using vertical de flection data,(2) the accuracy of CMG indicate good consistency between the SAL and GGPM,(3) SAL can be used as a new method for assessing marine geoid.展开更多
We investigate a matter dominated navigation cosmological model.The influence of a possible drift(wind) in the navigation cosmological model makes the spacetime geometry change from Riemannian to Finslerian.The evolut...We investigate a matter dominated navigation cosmological model.The influence of a possible drift(wind) in the navigation cosmological model makes the spacetime geometry change from Riemannian to Finslerian.The evolution of the Finslerian Universe is governed by the same gravitational field equation with the familiar Friedmann-Robertson-Walker one.However,the change of space geometry from Riemannian to Finslerian supplies us a new relation between the luminosity distant and redshift.It is shown that the Hubble diagram based on this new relation could account for the observations on distant Type Ia supernovae.展开更多
文摘According to the characteristics of gravity passive navigation, this paper presents a novel gravity passive navigation system (GPNS), which consists of the rate azimuth platform (RAP), gravity sensor, digitally stored gravity maps, depth sensor and relative log. The algorithm of rate azimuth platform inertial navigation system, error state-space equations, measurement equations and GPNS optimal filter are described. In view of the measurements made by an onboard gravity sensor the Eotvos effect is introduced in the gravity measurement equation of a GPNS optimal filter. A GPNS is studied with the Matlab/Simulink tools; simulation results demonstrate that a GPNS has small errors in platform attitude and position. Because the inertial navigation platform is the rate azimuth platform in the GPNS and gravity sensor is mounted on the rate azimuth platform, the cost of the GPNS is lower than existing GPNS's and according to the above results the GPNS meets the need to maintain accuracy navigation for underwater vehicles over long intervals.
基金The National Natural Science Foundation of China under contract No.41906199the Youth Innovation Project of National Space Science Center of Chinese Academy of Sciences under contract No.E0PD40012S。
文摘HY-2 A(Haiyang-2 A),launched in 2011,is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads.HY-2 A shifted the drift orbit in March 2016 and has been accumulating geodetic mission(GM)data for more than three years with 168-day cycle.In this paper,we present the preliminary gravity field inverted by the HY-2 A/GM data from March 2016 to December 2017 near Taiwan(21°–26°N,119°–123°E).The gravity anomaly is computed by Inverse Vening Meinesz(IVM)formula with a onedimensional FFT method during remove-restore procedure with the EGM2008 gravity model as the reference field.For comparison,CryoSat-2 altimeter data are used to inverse the gravity field near Taiwan Island by the same method.Comparing with the gravity field derived from CryoSat-2,a good agreement between the two data sets is found.The global ocean gravity models and National Geophysical Data Center(NGDC)shipboard gravity data also are used to assess the performance of HY-2 A/GM data.The evaluations show that HY-2 A and CryoSat-2 are at the same level in terms of gravity field recovery and the HY-2 A/GM altimeter-derived gravity field has an accuracy of 2.922 mGal.Therefore,we can believe that HY-2 A will be a new reliable data source for marine gravity field inversion and has the potentiality to improve the accuracy and resolution of the global marine gravity field.
基金Supported by the Research on Exploration and Development Technology and New Exploration Field of High Temperature and Pressure Gas Reservoir in Western South China Sea(CNOOC-KJ135ZDXM38ZJ02ZJ)National Natural Science Foundation of China(41972129)National Science and Technology Key Project(2016ZX05024-005,2016ZX05026-003-005)。
文摘The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.
文摘At present, new integrated navigation, which usesthe location function of reference gravity anomaly map to control the errors of the inertial navigation system (INS), has been developed in marine navigation. It is named the gravity-aided INS. Both the INS and real-time computation of gravity anomalies need a 3-D marine normal gravity model. Conventionally, a reduction method applied in geophysical survey is directiy introduced to observed data processing. This reduction does not separate anomaly from normal gravity in the observed data, so errors cannot be avoided. The 3-D marine normal gravity model was derived from the J2 gravity model, and is suitable for the region whose depth is less than 1000 m.
文摘Based upon a discussion on the merits and limitations of proportional navigation(PN)guidance law in which constant gravity compensation is included as a part,a counterpart having varying compensations,which changes with pitching angle and line-of-sight angle,is substituted.Flight trajectory simulation over a submissile model is conducted,resulting in increased impact angle,shorter miss distance,smaller maximum normal overload and narrower terminal angle of attack.
基金supported by the National Natural Science Foundation of China(61673060)the National Key R&D Plan(2016YFB0501700)
文摘Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital model and the resolution is 2’ × 2’,a filter model based on vehicle position is derived and the particularity of inertial navigation system(INS) output is employed to estimate a parameter in the system model. Meanwhile, the matching algorithm based on point mass filter(PMF) is applied and several optimal selection strategies are discussed. It is obtained that the point mass filter algorithm based on the deterministic resampling method has better practicability. The reliability and the accuracy of the algorithm are verified via simulation tests.
文摘Territorial water is a significant part of national sovereignty of China,thus the infrastructures of national space datum and location services should cover the sea areas except for the land areas.China has established relatively complete geodetic coordinate frame in land areas over the past decades,including the lastest developed China Geodetic Coordinate System 2000(CGCS 2000)with its reference frame and the national gravity datum 2000.However,the currently used geodetic infrastructures have not well covered the sea areas of China.The marine geodetic datum and marine navigation technologies need to be further developed and extended to satisfy the national demands of marine environment and resources detection,scientific investigation as well as marine economy development in new era of China.This paper mainly reviews the development and the progress of Chinese marine geodetic datum and marine navigation,analyses related key technologies in establishing our national marine geodetic datum.Some current trends and future directions for independently developing our national marine geodetic datum and marine navigation technologies are discussed.
文摘Waves are the most important phenomena affecting marine navigation, either in the field of fishing, military or transporting of goods. This paper tries to answer the following important questions: What are the causes and types of waves in the coast of Zuaracity? What are their characteristics? And how do those waves affect the marine navigation and human activities on this coast? The research finds significant results devoted in that: the coast is exposed to on type of waves;wind waves. Zuara coast has never been exposed to waves of Tsunami or landslides. The largest size of the wave forms in winter season due to the wind of north-west which is the fastest wind type that the Libyan coast is exposed to. However, the highest speed is up to 65 knots accompanied with waves reach a height of more than 7 meters. The research also classifies the wind speeds that lead to cancelling ships and boats trips that depend on this work is studying the waves in Zuara coast and the relationship with the waves of Libyan coast and Mediterranean sea. Also, it focuses on the effect of waves on boat speed, design, fuel consumption, and other effects.
基金Supported by the National Natural Science Foundation for Outstanding Youth(61422102)Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China(61127004)
文摘Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval in matching trajectory is addressed by an unequal-interval data fusion algorithm which is based on the unequal-interval characteristics analysis of the matching trajectory.Compared with previously available methods,the proposed algorithm improves the location precision.In conclusion,simulations of the integrated navigation system demonstrated the effectiveness and superiority of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(Nos.42192535,41876136)the Guangdong Special Support Program(No.2019BT02H594)。
文摘A new gravity sensor based on electromagnetic damping for the JMGrav marine gravimeter is presented.The new gravity sensor considered the advanced construction methods of the electromagnetic damping system of the gravimeter.The design features of the new system are discussed and the research survey data in the South China Sea are shown.Numerical simulations are applied to model the magnetic and mechanical characteristics of the system using finite element analysis and to evaluate the force distribution and the resulting damping effects.The performance characteristics of the system were tested on a motion simulator in laboratory,and the gravimeter was subjected to vertical accelerations of up to 100 Gal in 1-1000 s.It was found that the amplitude reduction of vertical accelerations in 3-15 s is 30-45 dB,with a time lag of 2-5 s,while the effect on gravity in period greater than 600 s is less than 0.5 dB,with a time lag of less than 100 s.The accelerations cause discrepancies of approximately only 1 mGal between the static value and the mean dynamic value.The sea tests were conducted in September 2020.Gravity measurements were taken with a JMGrav marine gravimeter onboard the R/V Dongfanghong 3,and the effective survey line exceeded 2000 km.Completely irregular accelerations with peaks up to 100 Gal yielded a reduction of approximately 40 dB in amplitude.The survey data were evaluated using ocean gravity field models and grid line tests.The results show that the accuracy of the gravity measurements is better than 2 mGal.
基金sponsored by the National "863 Program" of China (2014AA121501)the National Natural Science Foundation of China (41574030)sponsored by the Stichting Nationale Computer faciliteiten (National Computing Facilities Foundation, NCF) by providing the high-performance computing facilities
文摘The conventional dynamic approach for gravity filed modelling has been implemented in the PANDA(Position and Navigation Data Analyst) software. A variant of the so-called ’two-step’ method for gravity field modelling is adopted for this purpose, where the GRACE(Gravity Recovery and Climate Experiment)orbits are derived from the GPS(Global Positioning System) data in a first step followed by a simultaneous determination of dynamic orbit and gravity filed from the GPS-derived orbits and K-band rangerate measurements in a second step. In this way, the monthly gravity field solutions complete to degree and order 96 are produced for the period Jan. 2005 to Dec. 2010. Their performance is assessed by comparing them with the official solutions, i.e., CSR RL05, GFZ RL05 a and JPL RL05. A comparison in the spectral domain in terms of geoid heights reveals that the obtained solutions present the smallest degree amplitudes at degree 30-75. A further analysis of mass changes in the spatial domain demonstrates that the main signals observed from the obtained solutions are in great agreement with those from the official solutions. Remarkably, the correlation coefficients of mass changes in large river basins from the official solutions with respect to those from the obtained solutions are all above 0.97. These results demonstrate that the obtained solutions are comparable to the official solutions.
文摘The normal gravity model of a hypersonic boost-glide vehicle in near space is studied in this paper with the aim of alleviating the influence of the gravity model error on the precision of the inertial navigation system(INS)during flight.First,a spherical harmonic model of the Earth’s gravitational field is introduced and the normal gravity of the Earth is derived from it.Then,the coordinate transformation needed for the application of the gravity model to the near-space navigation algorithm is formulated.Subsequently,the gravity disturbance in near space and the impact of J_(2)and J_(4)gravity truncation errors are analyzed.Finally,different normal gravity models and different precisions of inertial measurement unit(IMU)are exploited to simulate the near-space navigation algorithm.Based on this,the influence of the independent and combined effects caused by the interference factors is analyzed,and the applicable conditions of the normal gravity model are discussed.
基金Open Fund of Hubei Luojia Laboratory(No.220100033)National Natural Science Foundation of China(Nos.42174108,42192535,42242015)。
文摘Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic process inside the Earth.Over the years,a variety of technical means have been used to detect the Earth’s gravity field and supported numerous studies on the global change,resource detection,geological structure movement,water resources change and other related fields of research.Here is part of the progress in surface and marine gravimetry obtained by Chinese geodesy scientists from 2019 to 2023 from the following aspects,including:①Continuous gravity network in Chinese mainland;②Application of superconducting gravity measurement;③Network adjustment for continental-scale gravity survey campaign and data quality control;④Regional time-variable gravity field and its application;⑤Research progress on novel technologies for gravity inversion;⑥Research progress on marine gravity field determination;⑦Application research on marine gravity field.
基金This work was supported by the project of China Geological Survey(DD20191002)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0208)the National Natural Science Foundation of China(41606080,41576068)。
文摘The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is critical for the research on the tectonic evolution of marginal seas in the Western Pacific Ocean.However,only few studies have been completed on the southern part,and the geophysical fields and deep structures in this part are not well understood.Given this,this study finely depicts the characteristics of the gravity and magnetic anomalies and extracts information on deep structures in the southern part of the KPR based on the gravity and magnetic data obtained from the 11th expedition of the deep-sea geological survey of the Western Pacific Ocean conducted by the Guangzhou Marine Geological Survey,China Geological Survey using the R/V Haiyangdizhi 6.Furthermore,with the data collected on the water depth,sediment thickness,and multichannel seismic transects as constraints,a 3D density model and Moho depths of the study area were obtained using 3D density inversion.The results are as follows.(1)The gravity and magnetic anomalies in the study area show distinct zoning and segmentation.In detail,the gravity and magnetic anomalies to the south of 11°N of the KPR transition from high-amplitude continuous linear positive anomalies into low-amplitude intermittent linear positive anomalies.In contrast,the gravity and magnetic anomalies to the north of 11°N of the KPR are discontinuous and show alternating positive and negative anomalies.These anomalies can be divided into four sections,of which the separation points correspond well to the locations of deep faults,thus,revealing different field-source attributes and tectonic genesis of the KPR.(2)The Moho depth in the basins in the study area is 6-12 km.The Moho depth in the southern part of KPR show segmentation.Specifically,the depth is 10‒12 km to the north of 11°N,12‒14 km from 9.5°N to 11°N,14-16 km from 8.5°N to 9.5°N,and 16‒25 km in the Palau Islands.(3)The KPR is a remnant intra-oceanic arc with the oceanic-crust basement.which shows noticeably discontinuous from north to south in geological structure and is intersected by NEE-trending lithospheric-scale deep faults.With large and deep faults F3 and F1(the Mindanao fault)as boundaries overall,the southern part of the KPR can be divided into three zones.In detail,the portion to the south of 8.5°N(F3)is a tectonically active zone,the KPR portion between 8.5°N and 11°N is a tectonically active transition zone,and the portion to the north of 11°N is a tectonically inactive zone.(4)The oceanic crust in the KPR is slightly thicker than that in the basins on both sides of the ridge,and it is inferred that the KPR formed from the thickening of the oceanic crust induced by the upwelling of deep magma in the process of rifting of remnant arcs during the Middle Oligocene.In addition,it is inferred that the thick oceanic crust under the Palau Islands is related to the constant upwelling of deep magma induced by the continuous northwestward subduction of the Caroline Plate toward the Palau Trench since the Late Oligocene.This study provides a scientific basis for systematically understanding the crustal attributes,deep structures,and evolution of the KPR.
文摘The International Maritime Organization (IMO) has encouraged its member countries to introduce Formal Safety Assessment (FSA) for ship operations since the end of the last century. FSA can be used through certain formal assessing steps to generate effective recommendations and cautions to control marine risks and improve the safety of ships. On the basis of the brief introduction of FSA, this paper describes the ideas of applying FSA to the prevention of human error in ship operations. It especially discusses the investigation and analysis of the information and data using navigation simulators and puts forward some suggestions for the introduction and development of the FSA research work for safer ship operations.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41576069, 41306201, 41776189, 41706212 and 41706215)the Chinese Polar Environment Comprehensive Investigation & Assessment Programs (Grant Nos. CHINARE2017-01-03 and CHINARE2017-04-01)the Special Foundation of the Second Institute of Oceanography, SOA (Grant No. 14260-10)
文摘Marine geophysical survey by the Chinese National Antarctic Research Expedition (CHINARE) began with the first science expedition in 1984/1985, although only four cruises were performed in the vicinity of the Antarctic Peninsula between then and 1991/1992. After a 20 year hiatus, Antarctic marine geophysical research was relaunched by the Chinese Polar Environmental Comprehensive Investigation and Assessment Programs (known simply as the Chinese Polar Program) in 2011/2012. Integrated geophysical surveys have been carried out annually since, in Prydz Bay and the Ross Sea. During the last 5 years, we have acquired about 5500 km of bathymetric, gravimetric, and magnetic lines; more than 1800 km of seismic reflection lines; and data from several heat flow and Ocean Bottom Seismometer (OBS) stations. This work has deepened understandings of geophysical features and their implications for geological tectonics and glacial history in Antarctica and its surrounding seas. Compiled Antarctic Bouguer and Airy isostatic gravity anomalies show different features of tectonics between the East Antarctic stability and West Antarctic activity. Calculated magnetic anomalies, heat flow anomalies and lithospheric anisotropy offshore of Prydz Bay may imply high heat capacity of mantle shielded by the continental shelf lithosphere, but high heat dissipation of mantle due to the Cretaceous breakup of Gondwana along the continent and ocean transition (COT), where large sediment ridges would be brought about by the Oligocene ice sheet retreat and would enlarge free-air gravity anomalies. In the western Ross Sea, CHINARE seismic profiles indicate northern termination of the Terror Rift and deposition time of the grounding zone wedge in the northern JOIDES Basin.
基金This study was funded by the projects initiated by the China Geological Survey(DD20191003,DD20190236 and DD20190205).
文摘The intersection of the Kyushu-Palau Ridge(KPR)and the Central Basin Rift(CBR)of the West Philippine Basin(WPB)is a relic of a trench-trench-rift(TTR)type triple-junction,which preserves some pivotal information on the cessation of the seafloor spreading of the WPB,the emplacement and disintegration of the proto-Izu-Bonin-Mariana(IBM)Arc,and the transition from initial rifting to steady-state spreading of the Parece Vela Basin(PVB).However,the structural characteristics of this triple-junction have not been thoroughly understood.In this paper,using the newly acquired multi-beam bathymetric,gravity,and magnetic data obtained by the Qingdao Institute of Marine Geology,China Geological Survey,the authors depict the topographic,gravity,and magnetic characteristics of the triple-junction and adjacent region.Calculations including the upward continuations and total horizontal derivatives of gravity anomaly are also performed to highlight the major structural features and discontinuities.Based on these works,the morphological and structural features and their formation mechanisms are analyzed.The results show that the last episode amagmatic extension along the CBR led to the formation of a deep rift valley,which extends eastward and incised the KPR.The morphological and structural fabrics of the KPR near and to the south of the triple-junction are consistent with those of the western PVB,manifesting as a series of NNE-SSW-and N-S-trending ridges and troughs,which were produced by the extensional faults associated with the initial rifting of the PVB.The superposition of the above two reasons induced the prominent discontinuity of the KPR in deep and shallow crustal structures between 15°N‒15°30′N and 13°30′N‒14°N.Combined with previous authors’results,we propose that the stress produced by the early spreading of the PVB transmitted westward and promoted the final stage amagmatic extension of the CBR.The eastward propagation of the CBR destroyed the KPR,of which the magmatism had decayed or ceased at that time.The destruction mechanism of the KPR associated with the rifting of the PVB varies along strike the KPR.Adjacent to the triple-junction,the KPR was destroyed mainly due to the oblique intersection of the PVB rifting center.Whereas south of the triple-junction,the KPR was destroyed by the E-W-directional extensional faulting on its whole width.
基金supported by the Shandong Provincial Natural Science Foundation,China(No.ZR2021YQ43)the National Natural Science Foundation of China(Nos.U1933135 and 61931021)the Major Science and Technology Project of Shandong Province,China(No.2019JZZY010415)。
文摘As a classic deep learning target detection algorithm,Faster R-CNN(region convolutional neural network)has been widely used in high-resolution synthetic aperture radar(SAR)and inverse SAR(ISAR)image detection.However,for most common low-resolution radar plane position indicator(PPI)images,it is difficult to achieve good performance.In this paper,taking navigation radar PPI images as an example,a marine target detection method based on the Marine-Faster R-CNN algorithm is proposed in the case of complex background(e.g.,sea clutter)and target characteristics.The method performs feature extraction and target recognition on PPI images generated by radar echoes with the convolutional neural network(CNN).First,to improve the accuracy of detecting marine targets and reduce the false alarm rate,Faster R-CNN was optimized as the Marine-Faster R-CNN in five respects:new backbone network,anchor size,dense target detection,data sample balance,and scale normalization.Then,JRC(Japan Radio Co.,Ltd.)navigation radar was used to collect echo data under different conditions to build a marine target dataset.Finally,comparisons with the classic Faster R-CNN method and the constant false alarm rate(CFAR)algorithm proved that the proposed method is more accurate and robust,has stronger generalization ability,and can be applied to the detection of marine targets for navigation radar.Its performance was tested with datasets from different observation conditions(sea states,radar parameters,and different targets).
基金supported by the National Natural Science Foundation of China (Grant Nos.41704011,41274032,41474018, and 41429401)the National 973 Project of China (Grant Nos. 2013CB733301 and 2013CB733302).
文摘Based on the concept of Global Position System(GPS)/leveling,the satellite altimetry leveling(SAL) is first proposed to evaluate the marine geoid.SAL is derived by the difference among the mean sea surface(MSS),mean dynamic ocean topography(MDT),and leveling origin.In this study,(1) the original satellite altimetry data are processed to infer the vertical deflection and gravity anomaly,(2) the Chinese coastal marine geoids(CMG) are determined by using the differe nt methods(including Molodensky,least square collocation,Stokes formula,and two-dimensional fast Fourier transformation(FFT) with the vertical deflection and gravity anomaly data),(3) CMG are evaluated by using the results from above different methods,the Gravity field and steady-state Ocean Circulation Explorer(GOCE) gravity potential model(GGPM),and SAL.The results show that(1) CMG from the Molodensky method has the highest precision by using vertical de flection data,(2) the accuracy of CMG indicate good consistency between the SAL and GGPM,(3) SAL can be used as a new method for assessing marine geoid.
基金Supported by National Natural Science Foundation of China under Grant Nos.10525522 and 10875129
文摘We investigate a matter dominated navigation cosmological model.The influence of a possible drift(wind) in the navigation cosmological model makes the spacetime geometry change from Riemannian to Finslerian.The evolution of the Finslerian Universe is governed by the same gravitational field equation with the familiar Friedmann-Robertson-Walker one.However,the change of space geometry from Riemannian to Finslerian supplies us a new relation between the luminosity distant and redshift.It is shown that the Hubble diagram based on this new relation could account for the observations on distant Type Ia supernovae.