Based on core description,thin section identification,X-ray diffraction analysis,scanning electron microscopy,low-temperature gas adsorption and high-pressure mercury intrusion porosimetry,the shale lithofacies of Sha...Based on core description,thin section identification,X-ray diffraction analysis,scanning electron microscopy,low-temperature gas adsorption and high-pressure mercury intrusion porosimetry,the shale lithofacies of Shan23 sub-member of Permian Shanxi Formation in the east margin of Ordos Basin was systematically analyzed in this study.The Shan23 sub-member has six lithofacies,namely,low TOC clay shale(C-L),low TOC siliceous shale(S-L),medium TOC siliceous shale(S-M),medium TOC hybrid shale(M-M),high TOC siliceous shale(S-H),and high TOC clay shale(C-H).Among them,S-H is the best lithofacies,S-M and M-M are the second best.The C-L and C-H lithofacies,mainly found in the upper part of Shan23 sub-member,generally developed in tide-dominated delta facies;the S-L,S-M,S-H and M-M shales occurring in the lower part of Shan23 sub-member developed in tide-dominated estuarine bay facies.The S-H,S-M and M-M shales have good pore struc-ture and largely organic matter pores and mineral interparticle pores,including interlayer pore in clay minerals,pyrite inter-crystalline pore,and mineral dissolution pore.C-L and S-L shales have mainly mineral interparticle pores and clay mineral in-terlayer pores,and a small amount of organic matter pores,showing poorer pore structure.The C-H shale has organic mi-cro-pores and a small number of interlayer fissures of clay minerals,showing good micro-pore structure,and poor meso-pore and macro-pore structure.The formation of favorable lithofacies is jointly controlled by depositional environment and diagen-esis.Shallow bay-lagoon depositional environment is conducive to the formation of type II2 kerogen which can produce a large number of organic cellular pores.Besides,the rich biogenic silica is conducive to the preservation of primary pores and en-hances the fracability of the shale reservoir.展开更多
It is well known that oil generated from source rocks of saline-lake facies is characteristic of low Pr/Ph ratio and high contents of gammacerane.The authors found that gas generated from the same source rocks was hig...It is well known that oil generated from source rocks of saline-lake facies is characteristic of low Pr/Ph ratio and high contents of gammacerane.The authors found that gas generated from the same source rocks was high in benzene and cyclohexane contents and had light carbon isotope compositions.In this study,a series of thermal simulations of gas generations on source rock with/without evaporites(such as carbonate,gypsum,and sodium chlorite,respectively),were conducted.It was found that the gypsum played an important role on the catalyzsis of gas generation in the thermal simulations.Compositions of the gaseous hydrocarbons generated from source rocks with evaporites are very similar to those of natural gases discovered from northern Dongying Depression.Meanwhile,in the thermal simulations,it was found that the carbon isotopic compositions of gaseous hydrocarbons generated from source rocks with evaporites are lighter than those of the gases from source rocks without evaporites.Therefore,it is concluded that natural gases discovered from northern Dongying Depression are the product of interaction between source rocks and evaporites(especially gypsum) of the saline facies.展开更多
The present study attempts to define the relationship between groundwater flow systems and the distribution of chemical facies with the aid of Geographical Information System (GIS). The study also identifies the diffe...The present study attempts to define the relationship between groundwater flow systems and the distribution of chemical facies with the aid of Geographical Information System (GIS). The study also identifies the different geochemical processes responsible for the chemical evolution of groundwater chemistry. Analytical results of 23 groundwater samples reveal mean values of cations as Na+ (84.2 mg/l), K+ (4.2 mg/l), Ca2+ (27 mg/l), Mg2+ (11.5 mg/l) and Fe2+ (0.6 mg/l). The anion mean values are HCO3– (4.5 mg/l), SO42– (3.7 mg/l), Cl– (22.5 mg/l) and NO3– (2.2 mg/l). Based on mean values, the cations are in order of abundance as Na+ > Ca2+> Mg2+ > K+ > Fe2+ while the anions reveal order of abundance as Cl– > HCO3– > SO42– > NO3– . The geographical information system (GIS) using Inverse Distance Weighted (IDW) delineate two groundwater zones into: Ca-Mg-SO4-Cl and Na-SO4-Cl water types. The Ca-Mg-SO4-Cl constitutes about 35% of the chemical facies and its evolutionary trend is due to simple hydrochemical mixing between Ca-Mg-HCO3 and Na-SO4-Cl facies and reverse cation exchange. The Na-SO4-Cl facies constitutes about 65% of the chemical facies and represents fossil groundwater. The Ca-Mg-SO4-Cl facies is dominant in the recharge areas while Na-SO4-Cl facies prevails in discharge areas. Rock-water interaction diagrams indicate precipitation induced chemical weathering along with dissolution of rock-forming minerals. The scattered plots among ions revealed geochemical processes as carbonate weathering, silicate weathering, cation exchange and sulphate reduction. HCA identified effects of rock-water interaction and anthropogenic effects as responsible for the modification of groundwater chemistry in the area.展开更多
Magnetic structure of the continental crust is one of the important geophysical aspects of continental lithosphere. This paper reviews the achievements in the research into the magnetic structure and its significance ...Magnetic structure of the continental crust is one of the important geophysical aspects of continental lithosphere. This paper reviews the achievements in the research into the magnetic structure and its significance for crustal tectonics, composition, metamorphic facies, crust mantle interaction and magnetization of deep crust. Further studies are suggested according to the basic principles of rock and mineral magnetism in terms of petrology, geochemistry and structural geology. Emphasis is placed on new geological ideas and synthetic studies of the relationship between deep geological processes and interpretation of gravity, magnetic, electrical and seismic data. The relationships between magnetic, density, electricity, velocity, geothermal structures and deep geodynamic processes are taken as a system for the research into the deep geology.展开更多
基金China National Science and Technology Major Project(2017ZX05035).
文摘Based on core description,thin section identification,X-ray diffraction analysis,scanning electron microscopy,low-temperature gas adsorption and high-pressure mercury intrusion porosimetry,the shale lithofacies of Shan23 sub-member of Permian Shanxi Formation in the east margin of Ordos Basin was systematically analyzed in this study.The Shan23 sub-member has six lithofacies,namely,low TOC clay shale(C-L),low TOC siliceous shale(S-L),medium TOC siliceous shale(S-M),medium TOC hybrid shale(M-M),high TOC siliceous shale(S-H),and high TOC clay shale(C-H).Among them,S-H is the best lithofacies,S-M and M-M are the second best.The C-L and C-H lithofacies,mainly found in the upper part of Shan23 sub-member,generally developed in tide-dominated delta facies;the S-L,S-M,S-H and M-M shales occurring in the lower part of Shan23 sub-member developed in tide-dominated estuarine bay facies.The S-H,S-M and M-M shales have good pore struc-ture and largely organic matter pores and mineral interparticle pores,including interlayer pore in clay minerals,pyrite inter-crystalline pore,and mineral dissolution pore.C-L and S-L shales have mainly mineral interparticle pores and clay mineral in-terlayer pores,and a small amount of organic matter pores,showing poorer pore structure.The C-H shale has organic mi-cro-pores and a small number of interlayer fissures of clay minerals,showing good micro-pore structure,and poor meso-pore and macro-pore structure.The formation of favorable lithofacies is jointly controlled by depositional environment and diagen-esis.Shallow bay-lagoon depositional environment is conducive to the formation of type II2 kerogen which can produce a large number of organic cellular pores.Besides,the rich biogenic silica is conducive to the preservation of primary pores and en-hances the fracability of the shale reservoir.
基金prepared under the permission of the authorities of the Shengli Oilfield,and funded by the National Natural Science Foundation of China (No. 40572084)SINOPEC (No. P07008)
文摘It is well known that oil generated from source rocks of saline-lake facies is characteristic of low Pr/Ph ratio and high contents of gammacerane.The authors found that gas generated from the same source rocks was high in benzene and cyclohexane contents and had light carbon isotope compositions.In this study,a series of thermal simulations of gas generations on source rock with/without evaporites(such as carbonate,gypsum,and sodium chlorite,respectively),were conducted.It was found that the gypsum played an important role on the catalyzsis of gas generation in the thermal simulations.Compositions of the gaseous hydrocarbons generated from source rocks with evaporites are very similar to those of natural gases discovered from northern Dongying Depression.Meanwhile,in the thermal simulations,it was found that the carbon isotopic compositions of gaseous hydrocarbons generated from source rocks with evaporites are lighter than those of the gases from source rocks without evaporites.Therefore,it is concluded that natural gases discovered from northern Dongying Depression are the product of interaction between source rocks and evaporites(especially gypsum) of the saline facies.
文摘The present study attempts to define the relationship between groundwater flow systems and the distribution of chemical facies with the aid of Geographical Information System (GIS). The study also identifies the different geochemical processes responsible for the chemical evolution of groundwater chemistry. Analytical results of 23 groundwater samples reveal mean values of cations as Na+ (84.2 mg/l), K+ (4.2 mg/l), Ca2+ (27 mg/l), Mg2+ (11.5 mg/l) and Fe2+ (0.6 mg/l). The anion mean values are HCO3– (4.5 mg/l), SO42– (3.7 mg/l), Cl– (22.5 mg/l) and NO3– (2.2 mg/l). Based on mean values, the cations are in order of abundance as Na+ > Ca2+> Mg2+ > K+ > Fe2+ while the anions reveal order of abundance as Cl– > HCO3– > SO42– > NO3– . The geographical information system (GIS) using Inverse Distance Weighted (IDW) delineate two groundwater zones into: Ca-Mg-SO4-Cl and Na-SO4-Cl water types. The Ca-Mg-SO4-Cl constitutes about 35% of the chemical facies and its evolutionary trend is due to simple hydrochemical mixing between Ca-Mg-HCO3 and Na-SO4-Cl facies and reverse cation exchange. The Na-SO4-Cl facies constitutes about 65% of the chemical facies and represents fossil groundwater. The Ca-Mg-SO4-Cl facies is dominant in the recharge areas while Na-SO4-Cl facies prevails in discharge areas. Rock-water interaction diagrams indicate precipitation induced chemical weathering along with dissolution of rock-forming minerals. The scattered plots among ions revealed geochemical processes as carbonate weathering, silicate weathering, cation exchange and sulphate reduction. HCA identified effects of rock-water interaction and anthropogenic effects as responsible for the modification of groundwater chemistry in the area.
基金This study is supported by the Visiting Scholar Foundation of Key Lab in University of Chinathe Ministry of Education and the
文摘Magnetic structure of the continental crust is one of the important geophysical aspects of continental lithosphere. This paper reviews the achievements in the research into the magnetic structure and its significance for crustal tectonics, composition, metamorphic facies, crust mantle interaction and magnetization of deep crust. Further studies are suggested according to the basic principles of rock and mineral magnetism in terms of petrology, geochemistry and structural geology. Emphasis is placed on new geological ideas and synthetic studies of the relationship between deep geological processes and interpretation of gravity, magnetic, electrical and seismic data. The relationships between magnetic, density, electricity, velocity, geothermal structures and deep geodynamic processes are taken as a system for the research into the deep geology.