Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marin...Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas.展开更多
Based on 10 shale samples collected from 4 wells in Qinshui Basin,we investigate the full-sized pore structure and fractal characteristics of Marine-Continental transitional shale by performing organic geochemistry,mi...Based on 10 shale samples collected from 4 wells in Qinshui Basin,we investigate the full-sized pore structure and fractal characteristics of Marine-Continental transitional shale by performing organic geochemistry,mineralogical composition,Nitrogen gas adsorption(N2 adsorption)and Nuclear Magnetic Resonance(NMR)measurements and fractal analysis.Results show that the TOC content of the shale samples is relatively high,with an average value of 2.44wt%,and the thermal evolution is during the mature-over mature stage.The NMR T2 spectrum can be used to characterize the fullsized pore structure characteristics of shale.By combining N2 adsorption pore structure parameters and NMR T2 spectrums,the surface relaxivity of samples are calculated to be between 1.7877 um/s and 5.2272 um/s.On this basis,the T2 spectrums are converted to full-sized pore volume and surface area distribution curves.The statistics show that the pore volume is mainly provided by mesopore,followed by micropore,and the average percentages are 65.04%and 30.83%respectively;the surface area is mainly provided by micropore,followed by mesopore,and the average percentages are 60.8004%and 39.137%respectively;macropore contributes little to pore volume and surface area.The pore structure characteristics of shale have no relationship with TOC,but strong relationships with clay minerals content.NMR fractal dimensions Dmicro and Dmeso have strong positive relationships with the N2 adsorption fractal dimensions D1 and D2 respectively,indicating that Dmicro can be used to characterize the fractal characteristics of pore surface,and Dmeso can be used to characterize the fractal characteristics of pore structure.The shale surface relaxivity is controlled by multiple factors.The increasing of clay mineral content,pore surface area,pore surface fractal dimension and the decreasing of average pore size,will all lead to the decreasing of shale surface relaxivity.展开更多
In this work,the Permian Longtan marine-continental transitional shale in the southeast of Sichuan Basin was taken as study object.Through petrology and geochemical analysis,lithofacies types of the marine-continental...In this work,the Permian Longtan marine-continental transitional shale in the southeast of Sichuan Basin was taken as study object.Through petrology and geochemical analysis,lithofacies types of the marine-continental transitional shale were classified,key controlling factors of physical properties and gas content of the different shale lithofacies were analyzed.The research results show that the Longtan Formation marine-continental transitional shale in the study area has four types of lithofacies,namely,organic-lean calcareous shale,organic-lean mixed shale,organic-lean argillaceous shale,and organic-rich argillaceous shale,among which the organic-rich argillaceous shale is the most favorable lithofacies of the study area.The pore types of different lithofacies vary significantly and the clay mineral-related pore is the dominant type of the pore system in the study area.The main controlling factor of the physical properties is clay mineral content,and the most important factor affecting gas content is TOC content.Compared with marine shale,the marine-continental transitional shale has low average values,wide distribution range,and strong heterogeneity in TOC content,porosity,and pore structure parameters,but still contains some favorable layers with high physical properties and gas contents.The organic-rich clay shale deposited in tidal flat-lagoon system is most likely to form shale gas sweet spots,so it should be paid more attention in shale gas exploration.展开更多
Along with the rapid growth of economy in the postreform period after 1979,China has faced severe problems of resource overusing and environmental degradation which would threaten the sustainable development of econom...Along with the rapid growth of economy in the postreform period after 1979,China has faced severe problems of resource overusing and environmental degradation which would threaten the sustainable development of economy and society.This article explores an effective mechanism of managing resource and environment in China.It examines some major resource and environmental issues,and constructs a framework of institution innovation to cover three sectors(government,market and society) . In addition,the article analyzes their experience and evaluation in resource management and environmental conservation during the transitional period.We argue that the combination of market regulation,government intervention and public participation is an effective way of allocating resource and protecting environment. Some suggestions are put forward to balance the relationship between them,including coordinating role of government and market,building platform for market operation and creating an atmosphere of public participation.展开更多
The organic-rich shale of the Shanxi and Taiyuan Formation of the Lower Permian deposited in a marinecontinental transitional environment are well developed in the Ordos Basin,NW China,which is considered to contain a...The organic-rich shale of the Shanxi and Taiyuan Formation of the Lower Permian deposited in a marinecontinental transitional environment are well developed in the Ordos Basin,NW China,which is considered to contain a large amount of shale hydrocarbon resources.This study takes the Lower Permian Shanxi and Taiyuan shale collected from well SL~# in the Ordos Basin,NW China as an example to characterize the transitional shale reservoir.Based on organic geochemistry data,X-ray diffraction(XRD)analysis,field-emission scanning electron microscopy(FE-SEM)observations,the desorbed gas contents of this transitional shale were systematically studied and the shale gas potential was investigated.The results indicate that the Lower Permian Shanxi and Taiyuan shale has a relatively high total organic carbon(TOC)(average TOC of 4.9%)and contains type III kerogen with a high mature to over mature status.XRD analyses show that an important characteristic of the shale is that clay and brittle minerals of detrital origin comprise the major mineral composition of the marine-continental transitional shale samples,while the percentages of carbonate minerals,pyrite and siderite are relatively small.FE-SEM observations reveal that the mineral matrix pores are the most abundant in the Lower Permian shale samples,while organic matter(OM)pores are rarely developed.Experimental analysis suggests that the mineral compositions mainly govern the macropore development in the marine-continental transitional shale,and mineral matrix pores and microfractures are considered to provide space for gas storage and migration.In addition,the desorption experiments demonstrated that the marine-continental transitional shale in the Ordos Basin has a significantly potential for shale gas exploration,ranging from 0.53 to 2.86 m^3/t with an average value of 1.25m^3/t,which is in close proximity to those of terrestrial shale(1.29 m^3/t)and marine shale(1.28 m^3/t).In summary,these results demonstrated that the Lower Permian marine-continental transitional shale in the Ordos Basin has a significantly potential for shale gas exploration.展开更多
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory...Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.展开更多
The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimen...The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.展开更多
The concepts of branching chain in random environmnet and canonical branching chain in random environment are introduced. Moreover the existence of these chains is proved. Finally the exact formulas of mathematical ex...The concepts of branching chain in random environmnet and canonical branching chain in random environment are introduced. Moreover the existence of these chains is proved. Finally the exact formulas of mathematical expectation and variance of branching chain in random environment are also given.展开更多
Based on core description,thin section identification,X-ray diffraction analysis,scanning electron microscopy,low-temperature gas adsorption and high-pressure mercury intrusion porosimetry,the shale lithofacies of Sha...Based on core description,thin section identification,X-ray diffraction analysis,scanning electron microscopy,low-temperature gas adsorption and high-pressure mercury intrusion porosimetry,the shale lithofacies of Shan23 sub-member of Permian Shanxi Formation in the east margin of Ordos Basin was systematically analyzed in this study.The Shan23 sub-member has six lithofacies,namely,low TOC clay shale(C-L),low TOC siliceous shale(S-L),medium TOC siliceous shale(S-M),medium TOC hybrid shale(M-M),high TOC siliceous shale(S-H),and high TOC clay shale(C-H).Among them,S-H is the best lithofacies,S-M and M-M are the second best.The C-L and C-H lithofacies,mainly found in the upper part of Shan23 sub-member,generally developed in tide-dominated delta facies;the S-L,S-M,S-H and M-M shales occurring in the lower part of Shan23 sub-member developed in tide-dominated estuarine bay facies.The S-H,S-M and M-M shales have good pore struc-ture and largely organic matter pores and mineral interparticle pores,including interlayer pore in clay minerals,pyrite inter-crystalline pore,and mineral dissolution pore.C-L and S-L shales have mainly mineral interparticle pores and clay mineral in-terlayer pores,and a small amount of organic matter pores,showing poorer pore structure.The C-H shale has organic mi-cro-pores and a small number of interlayer fissures of clay minerals,showing good micro-pore structure,and poor meso-pore and macro-pore structure.The formation of favorable lithofacies is jointly controlled by depositional environment and diagen-esis.Shallow bay-lagoon depositional environment is conducive to the formation of type II2 kerogen which can produce a large number of organic cellular pores.Besides,the rich biogenic silica is conducive to the preservation of primary pores and en-hances the fracability of the shale reservoir.展开更多
This paper introduces some concepts such as q- process in random environment, Laplace transformation, ergodic potential kernel, error function and some basic lemmas.We study the continuity and Laplace transformation o...This paper introduces some concepts such as q- process in random environment, Laplace transformation, ergodic potential kernel, error function and some basic lemmas.We study the continuity and Laplace transformation of random transition function. Finally, we give the sufficient condition for the existence of ergodic potential kernel for homogeneous q- processes in random environments.展开更多
The concepts of bi-immigration birth and death density matrix in random environment and bi-immigration birth and death process in random environment are introduced. For any bi-immigration birth and death matrix in ran...The concepts of bi-immigration birth and death density matrix in random environment and bi-immigration birth and death process in random environment are introduced. For any bi-immigration birth and death matrix in random environment Q(θ) with birth rate λ 〈 death rate μ, the following results are proved, (1) there is an unique q-process in random environment, P^-(θ*(0);t) = (p^-(θ^*(0);t,i,j),i,j ≥ 0), which is ergodic, that is, lim t→∞(θ^*(0);t,i,j) = π^-(θ^*(0);j) ≥0 does not depend on i ≥ 0 and ∑j≥0π (θ*(0);j) = 1, (2) there is a bi-immigration birth and death process in random enjvironment (X^* = {X^*,t ≥ 0},ε^* = {εt,t ∈ (-∞, ∞)}) with random transition matrix P^-(θ^* (0);t) such that X^* is a strictly stationary process.展开更多
This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properti...This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properties of the transition probabilities are showed.展开更多
Two-dimensional(2D)melting is a fundamental research topic in condensed matter physics,which can also provide guidance on fabricating new functional materials.Nevertheless,our understanding of 2D melting is still far ...Two-dimensional(2D)melting is a fundamental research topic in condensed matter physics,which can also provide guidance on fabricating new functional materials.Nevertheless,our understanding of 2D melting is still far from being complete due to existence of possible complicate transition mechanisms and absence of effective analysis methods.Here,using Monte Carlo simulations,we investigate 2D melting of 60°rhombs which melt from two different surface-fullycoverable crystals,a complex hexagonal crystal(cHX)whose primitive cell contains three rhombs,and a simple rhombic crystal(RB)whose primitive cell contains one rhomb.The melting of both crystals shows a sequence of solid,hexatic in molecular orientation(Hmo),and isotropic phases which obey the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young(BKTHNY)theory.However,local polymorphic configuration(LPC)based analysis reveals different melting mechanisms:the cHX-Hmotransition is driven by the proliferation of point-like defects during which defect-associated LPCs are generated sequentially,whereas the RB-Hmotransition is driven by line defects where defect-associated LPCs are generated simultaneously.These differences result in the observed different solid-Hmotransition points which areφA=0.812 for the cHX-HmoandφA=0.828 for the RB-Hmo.Our work will shed light on the initial-crystal-dependence of 2D melting behavior.展开更多
The desert-oasis transition zone(DOTZ)serves as a buffer area between the desert and oasis.Understanding its wind field characteristics is of great significance for the prevention and control of aeolian disasters in t...The desert-oasis transition zone(DOTZ)serves as a buffer area between the desert and oasis.Understanding its wind field characteristics is of great significance for the prevention and control of aeolian disasters in the oasis.In this study,we used meteorological data during 2013–2019 from the portable meteorological stations at five sites(site A on the edge of the oasis,sites B,C,and D in the DOTZ,and site O in the desert)in Dunhuang,China to analyze the near-surface wind field characteristics and their causes,as well as to reveal the key role of the DOTZ in oasis protection.The results showed that the mean wind speed,frequency of sand-driving wind,and directional variability of wind decreased from west to east within the DOTZ,and wind speed was significantly affected by air temperature.The terrain influenced the prevailing winds in the region,mainly from northeast and southwest.Only some areas adjacent to the oasis were controlled by southeasterly wind.This indicated that the near-surface wind field characteristics of the DOTZ were caused by the combined effects of local terrain and surface hydrothermal difference.At site D,the annual drift potential(DP)was 24.95 vector units(VU),indicating a low wind energy environment,and the resultant drift direction(RDD)showed obvious seasonal differences.Additionally,the DOTZ played an important buffering role between the desert and oasis.Compared with the desert,the mean wind speed in the oasis decreased by 64.98%,and the prevailing wind direction was more concentrated.The results of this study will be useful in interpreting the aeolian activity of the DOTZ in Dunhuang.展开更多
Single-atom catalysts have risen significant attention in the realm of green electrocatalytic energy conversion to address energy and environmental sustainability challenges.Transition metal dichalcogenide(TMD)-based ...Single-atom catalysts have risen significant attention in the realm of green electrocatalytic energy conversion to address energy and environmental sustainability challenges.Transition metal dichalcogenide(TMD)-based single-atom catalysts are considered highly effective in electrocatalysis due to the TMDs'notable specific surface area,tunable elemental species and efficient utilization of single atoms.In order to enhance electrocatalytic performance,it is imperative to elaborately engineer the local environment surrounding the active sites of single atoms within TMDs.In this review,we initially explore the effects of synthesis methods on single-atom active sites and the influence of loading of single atoms on catalytic performance for TMDs.The modulation strategies of the local environment surrounding single-atom sites in TMDs are elaborated,including substitution engineering,surface adsorption,vacancies,spatial confinement and dual-atom site strategies.For each modulation strategy,the effects of diverse local environments on various electrocatalytic applications are presented,such as the oxygen evolution reaction,oxygen reduction reaction,nitrogen reduction reaction,CO_(2)reduction reaction and CO oxidation.Ultimately,this study presents a comprehensive overview of the challenges encountered and the potential directions for the advancement of single-atom catalysts based on TMDs in the realm of electrocatalysis.展开更多
While fossil fuels greatly contribute to human society,they pose great challenges to natural resources,the environment,and climate change.Developed countries,like the United States,formulated strategic measures to ens...While fossil fuels greatly contribute to human society,they pose great challenges to natural resources,the environment,and climate change.Developed countries,like the United States,formulated strategic measures to ensure their sustainable development and leading positions in the world.These measures include new green policies,development of shale gas,revitalization of nuclear power,energy independence,reindustrialization,and new low-carbon development based on a combination of Internet technology and renewable energy.Developing countries are also trying to introduce balanced strategies of poverty alleviation and sustainable development.Globally,industrial civilization is being transformed to ecological civilization and green,low-carbon development is a global trend.Addressing climate change provides new strategic factors to further this development.China should take substantial actions to realize sustainable development in a new road:China is in the critical stage of changing its development mode,so it is vital to choose an appropriate development path.This extensive development comes at the high price of consuming too much resources and scarring the environment.Mitigation and adaptation strategies for addressing climate change can help the transition of development.Based on the analysis of the development data of developed countries,the author introduces the concept of"two-type developed countries"with an understanding that not all developed countries must take the same development mode.He also holds the view that China should achieve modernization in a more energy-saving and more carbon-efficient manner compared with that of two-type developed countries.An analysis of"two competitions"that China is facing shows that changing the developing mode is urgent and China should grasp this opportunity in the next five to ten years,which is a key period for this transition.This paper discusses the low-carbon development goals and the three-step process.Low-carbon development does not necessarily restrict economic development.It,however,can expedite the transition of the development mode and this is a low-carbon and green development path.Transition of the development mode includes implementation of China's green and low-carbon energy strategies,low-carbon society construction,development of agriculture and forestry,garbage sorting and utilization,innovation of urbanization,etc.Improvement of national infrastructure construction includes water safety,environment and climate monitoring system,intelligent energy web,basic database,etc.Addressing climate change can significantly improve the nation's basic research level.In summary,it mitigates backward production capability,extensive development,and environmental damage while promoting technological advancement,scientific development,and ecological civilization.展开更多
The concepts of Markov process in random environment and homogeneous random transition functions are introduced. The necessary and sufficient conditions for homogeneous random transition function are given. The main r...The concepts of Markov process in random environment and homogeneous random transition functions are introduced. The necessary and sufficient conditions for homogeneous random transition function are given. The main results in this article are the analytical properties, such as continuity, differentiability, random Kolmogorov backward equation and random Kolmogorov forward equation of homogeneous random transition functions.展开更多
The discrete choice model is used to estimate the walking access area of rail transit stations while considering the influence of existing competition from other traffic modes. The acceptable walking access area is de...The discrete choice model is used to estimate the walking access area of rail transit stations while considering the influence of existing competition from other traffic modes. The acceptable walking access area is determined according to the willingness of passengers to walk who prefer rail transit compared with bus and automobile. Empirical studies were conducted using the survey data of six stations from the rail transit in Nanjing, China. The results indicate that the rail transit is more preferable compared with bus and private automobile in this case when excluding the influence of individual and environmental factors. It is found that passengers tend to underestimate their willingness to walk. The acceptable walking access area of every rail transit station is different from each other. Suburban stations generally have a larger walking access area than downtown stations. In addition, a better walking environment and a scarcer surrounding traffic environment can also lead to a larger walking area. The model was confirmed to be effective and reasonable according to the model validation. This study can be of benefit to the passenger transportation demand estimation in the location planning and evaluation of rail transit stations.展开更多
基金jointly supported by the Science and Technology Department of Shanxi Province,China (20201101003)the National Natural Science Foundation of China (U1810201)the China Scholarship Council (202206400012)。
文摘Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas.
基金support from the National Science and Technology Major Project of China (Grant No. 2016ZX05034)
文摘Based on 10 shale samples collected from 4 wells in Qinshui Basin,we investigate the full-sized pore structure and fractal characteristics of Marine-Continental transitional shale by performing organic geochemistry,mineralogical composition,Nitrogen gas adsorption(N2 adsorption)and Nuclear Magnetic Resonance(NMR)measurements and fractal analysis.Results show that the TOC content of the shale samples is relatively high,with an average value of 2.44wt%,and the thermal evolution is during the mature-over mature stage.The NMR T2 spectrum can be used to characterize the fullsized pore structure characteristics of shale.By combining N2 adsorption pore structure parameters and NMR T2 spectrums,the surface relaxivity of samples are calculated to be between 1.7877 um/s and 5.2272 um/s.On this basis,the T2 spectrums are converted to full-sized pore volume and surface area distribution curves.The statistics show that the pore volume is mainly provided by mesopore,followed by micropore,and the average percentages are 65.04%and 30.83%respectively;the surface area is mainly provided by micropore,followed by mesopore,and the average percentages are 60.8004%and 39.137%respectively;macropore contributes little to pore volume and surface area.The pore structure characteristics of shale have no relationship with TOC,but strong relationships with clay minerals content.NMR fractal dimensions Dmicro and Dmeso have strong positive relationships with the N2 adsorption fractal dimensions D1 and D2 respectively,indicating that Dmicro can be used to characterize the fractal characteristics of pore surface,and Dmeso can be used to characterize the fractal characteristics of pore structure.The shale surface relaxivity is controlled by multiple factors.The increasing of clay mineral content,pore surface area,pore surface fractal dimension and the decreasing of average pore size,will all lead to the decreasing of shale surface relaxivity.
基金Supported by the National Natural Science Foundation (U19B6003).
文摘In this work,the Permian Longtan marine-continental transitional shale in the southeast of Sichuan Basin was taken as study object.Through petrology and geochemical analysis,lithofacies types of the marine-continental transitional shale were classified,key controlling factors of physical properties and gas content of the different shale lithofacies were analyzed.The research results show that the Longtan Formation marine-continental transitional shale in the study area has four types of lithofacies,namely,organic-lean calcareous shale,organic-lean mixed shale,organic-lean argillaceous shale,and organic-rich argillaceous shale,among which the organic-rich argillaceous shale is the most favorable lithofacies of the study area.The pore types of different lithofacies vary significantly and the clay mineral-related pore is the dominant type of the pore system in the study area.The main controlling factor of the physical properties is clay mineral content,and the most important factor affecting gas content is TOC content.Compared with marine shale,the marine-continental transitional shale has low average values,wide distribution range,and strong heterogeneity in TOC content,porosity,and pore structure parameters,but still contains some favorable layers with high physical properties and gas contents.The organic-rich clay shale deposited in tidal flat-lagoon system is most likely to form shale gas sweet spots,so it should be paid more attention in shale gas exploration.
基金funded by important direction of Chinese Academy of Sciences Knowledge Innovation Project(Grant no.kzcx2-yw-321)the National Natural Science Funds of Research on Water Pollution Effects of Industrial Agglomeration and Spatial Optimization-Case of Sunan Area(Grant no. 70703033)
文摘Along with the rapid growth of economy in the postreform period after 1979,China has faced severe problems of resource overusing and environmental degradation which would threaten the sustainable development of economy and society.This article explores an effective mechanism of managing resource and environment in China.It examines some major resource and environmental issues,and constructs a framework of institution innovation to cover three sectors(government,market and society) . In addition,the article analyzes their experience and evaluation in resource management and environmental conservation during the transitional period.We argue that the combination of market regulation,government intervention and public participation is an effective way of allocating resource and protecting environment. Some suggestions are put forward to balance the relationship between them,including coordinating role of government and market,building platform for market operation and creating an atmosphere of public participation.
基金This work was financially supported by the Chinese Academy of Sciences Key Project(Grant No.XDB10030404)the National key R&D Program of China(Grant No.2017YFA0604803)+1 种基金the National Natural Science Foundation of China(Grant Nos.41831176,41572350 and 41503049)the Key Laboratory Project of Gansu(Grant No.1309RTSA041).
文摘The organic-rich shale of the Shanxi and Taiyuan Formation of the Lower Permian deposited in a marinecontinental transitional environment are well developed in the Ordos Basin,NW China,which is considered to contain a large amount of shale hydrocarbon resources.This study takes the Lower Permian Shanxi and Taiyuan shale collected from well SL~# in the Ordos Basin,NW China as an example to characterize the transitional shale reservoir.Based on organic geochemistry data,X-ray diffraction(XRD)analysis,field-emission scanning electron microscopy(FE-SEM)observations,the desorbed gas contents of this transitional shale were systematically studied and the shale gas potential was investigated.The results indicate that the Lower Permian Shanxi and Taiyuan shale has a relatively high total organic carbon(TOC)(average TOC of 4.9%)and contains type III kerogen with a high mature to over mature status.XRD analyses show that an important characteristic of the shale is that clay and brittle minerals of detrital origin comprise the major mineral composition of the marine-continental transitional shale samples,while the percentages of carbonate minerals,pyrite and siderite are relatively small.FE-SEM observations reveal that the mineral matrix pores are the most abundant in the Lower Permian shale samples,while organic matter(OM)pores are rarely developed.Experimental analysis suggests that the mineral compositions mainly govern the macropore development in the marine-continental transitional shale,and mineral matrix pores and microfractures are considered to provide space for gas storage and migration.In addition,the desorption experiments demonstrated that the marine-continental transitional shale in the Ordos Basin has a significantly potential for shale gas exploration,ranging from 0.53 to 2.86 m^3/t with an average value of 1.25m^3/t,which is in close proximity to those of terrestrial shale(1.29 m^3/t)and marine shale(1.28 m^3/t).In summary,these results demonstrated that the Lower Permian marine-continental transitional shale in the Ordos Basin has a significantly potential for shale gas exploration.
文摘Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.
文摘The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.
文摘The concepts of branching chain in random environmnet and canonical branching chain in random environment are introduced. Moreover the existence of these chains is proved. Finally the exact formulas of mathematical expectation and variance of branching chain in random environment are also given.
基金China National Science and Technology Major Project(2017ZX05035).
文摘Based on core description,thin section identification,X-ray diffraction analysis,scanning electron microscopy,low-temperature gas adsorption and high-pressure mercury intrusion porosimetry,the shale lithofacies of Shan23 sub-member of Permian Shanxi Formation in the east margin of Ordos Basin was systematically analyzed in this study.The Shan23 sub-member has six lithofacies,namely,low TOC clay shale(C-L),low TOC siliceous shale(S-L),medium TOC siliceous shale(S-M),medium TOC hybrid shale(M-M),high TOC siliceous shale(S-H),and high TOC clay shale(C-H).Among them,S-H is the best lithofacies,S-M and M-M are the second best.The C-L and C-H lithofacies,mainly found in the upper part of Shan23 sub-member,generally developed in tide-dominated delta facies;the S-L,S-M,S-H and M-M shales occurring in the lower part of Shan23 sub-member developed in tide-dominated estuarine bay facies.The S-H,S-M and M-M shales have good pore struc-ture and largely organic matter pores and mineral interparticle pores,including interlayer pore in clay minerals,pyrite inter-crystalline pore,and mineral dissolution pore.C-L and S-L shales have mainly mineral interparticle pores and clay mineral in-terlayer pores,and a small amount of organic matter pores,showing poorer pore structure.The C-H shale has organic mi-cro-pores and a small number of interlayer fissures of clay minerals,showing good micro-pore structure,and poor meso-pore and macro-pore structure.The formation of favorable lithofacies is jointly controlled by depositional environment and diagen-esis.Shallow bay-lagoon depositional environment is conducive to the formation of type II2 kerogen which can produce a large number of organic cellular pores.Besides,the rich biogenic silica is conducive to the preservation of primary pores and en-hances the fracability of the shale reservoir.
基金Supported by the National Natural Science Foundation of China (10371092)
文摘This paper introduces some concepts such as q- process in random environment, Laplace transformation, ergodic potential kernel, error function and some basic lemmas.We study the continuity and Laplace transformation of random transition function. Finally, we give the sufficient condition for the existence of ergodic potential kernel for homogeneous q- processes in random environments.
基金Supported by the NNSF of China (10371092,10771185) the Foundation of Whuan University
文摘The concepts of bi-immigration birth and death density matrix in random environment and bi-immigration birth and death process in random environment are introduced. For any bi-immigration birth and death matrix in random environment Q(θ) with birth rate λ 〈 death rate μ, the following results are proved, (1) there is an unique q-process in random environment, P^-(θ*(0);t) = (p^-(θ^*(0);t,i,j),i,j ≥ 0), which is ergodic, that is, lim t→∞(θ^*(0);t,i,j) = π^-(θ^*(0);j) ≥0 does not depend on i ≥ 0 and ∑j≥0π (θ*(0);j) = 1, (2) there is a bi-immigration birth and death process in random enjvironment (X^* = {X^*,t ≥ 0},ε^* = {εt,t ∈ (-∞, ∞)}) with random transition matrix P^-(θ^* (0);t) such that X^* is a strictly stationary process.
基金supported by NNSF of China(6053408070571079)Open Fundation of SKLSE of Wuhan University (2008-07-03)
文摘This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properties of the transition probabilities are showed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874277,21621004,12104453,and 12090054)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33030300)
文摘Two-dimensional(2D)melting is a fundamental research topic in condensed matter physics,which can also provide guidance on fabricating new functional materials.Nevertheless,our understanding of 2D melting is still far from being complete due to existence of possible complicate transition mechanisms and absence of effective analysis methods.Here,using Monte Carlo simulations,we investigate 2D melting of 60°rhombs which melt from two different surface-fullycoverable crystals,a complex hexagonal crystal(cHX)whose primitive cell contains three rhombs,and a simple rhombic crystal(RB)whose primitive cell contains one rhomb.The melting of both crystals shows a sequence of solid,hexatic in molecular orientation(Hmo),and isotropic phases which obey the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young(BKTHNY)theory.However,local polymorphic configuration(LPC)based analysis reveals different melting mechanisms:the cHX-Hmotransition is driven by the proliferation of point-like defects during which defect-associated LPCs are generated sequentially,whereas the RB-Hmotransition is driven by line defects where defect-associated LPCs are generated simultaneously.These differences result in the observed different solid-Hmotransition points which areφA=0.812 for the cHX-HmoandφA=0.828 for the RB-Hmo.Our work will shed light on the initial-crystal-dependence of 2D melting behavior.
基金the National Key Research and Development Program of China(2020YFA0608403)the National Natural Science Foundation of China(42171083)the Natural Science Foundation of Gansu Province,China(23JRRA601).
文摘The desert-oasis transition zone(DOTZ)serves as a buffer area between the desert and oasis.Understanding its wind field characteristics is of great significance for the prevention and control of aeolian disasters in the oasis.In this study,we used meteorological data during 2013–2019 from the portable meteorological stations at five sites(site A on the edge of the oasis,sites B,C,and D in the DOTZ,and site O in the desert)in Dunhuang,China to analyze the near-surface wind field characteristics and their causes,as well as to reveal the key role of the DOTZ in oasis protection.The results showed that the mean wind speed,frequency of sand-driving wind,and directional variability of wind decreased from west to east within the DOTZ,and wind speed was significantly affected by air temperature.The terrain influenced the prevailing winds in the region,mainly from northeast and southwest.Only some areas adjacent to the oasis were controlled by southeasterly wind.This indicated that the near-surface wind field characteristics of the DOTZ were caused by the combined effects of local terrain and surface hydrothermal difference.At site D,the annual drift potential(DP)was 24.95 vector units(VU),indicating a low wind energy environment,and the resultant drift direction(RDD)showed obvious seasonal differences.Additionally,the DOTZ played an important buffering role between the desert and oasis.Compared with the desert,the mean wind speed in the oasis decreased by 64.98%,and the prevailing wind direction was more concentrated.The results of this study will be useful in interpreting the aeolian activity of the DOTZ in Dunhuang.
基金supported by the“Teli Young Scholar”ProgramTechnology Innovation Program of Beijing Institute of Technology+2 种基金“Xiaomi Scholar”Program“Langyue”ProgramBeijing Municipal Natural Science Foundation(No.2232023)。
文摘Single-atom catalysts have risen significant attention in the realm of green electrocatalytic energy conversion to address energy and environmental sustainability challenges.Transition metal dichalcogenide(TMD)-based single-atom catalysts are considered highly effective in electrocatalysis due to the TMDs'notable specific surface area,tunable elemental species and efficient utilization of single atoms.In order to enhance electrocatalytic performance,it is imperative to elaborately engineer the local environment surrounding the active sites of single atoms within TMDs.In this review,we initially explore the effects of synthesis methods on single-atom active sites and the influence of loading of single atoms on catalytic performance for TMDs.The modulation strategies of the local environment surrounding single-atom sites in TMDs are elaborated,including substitution engineering,surface adsorption,vacancies,spatial confinement and dual-atom site strategies.For each modulation strategy,the effects of diverse local environments on various electrocatalytic applications are presented,such as the oxygen evolution reaction,oxygen reduction reaction,nitrogen reduction reaction,CO_(2)reduction reaction and CO oxidation.Ultimately,this study presents a comprehensive overview of the challenges encountered and the potential directions for the advancement of single-atom catalysts based on TMDs in the realm of electrocatalysis.
文摘While fossil fuels greatly contribute to human society,they pose great challenges to natural resources,the environment,and climate change.Developed countries,like the United States,formulated strategic measures to ensure their sustainable development and leading positions in the world.These measures include new green policies,development of shale gas,revitalization of nuclear power,energy independence,reindustrialization,and new low-carbon development based on a combination of Internet technology and renewable energy.Developing countries are also trying to introduce balanced strategies of poverty alleviation and sustainable development.Globally,industrial civilization is being transformed to ecological civilization and green,low-carbon development is a global trend.Addressing climate change provides new strategic factors to further this development.China should take substantial actions to realize sustainable development in a new road:China is in the critical stage of changing its development mode,so it is vital to choose an appropriate development path.This extensive development comes at the high price of consuming too much resources and scarring the environment.Mitigation and adaptation strategies for addressing climate change can help the transition of development.Based on the analysis of the development data of developed countries,the author introduces the concept of"two-type developed countries"with an understanding that not all developed countries must take the same development mode.He also holds the view that China should achieve modernization in a more energy-saving and more carbon-efficient manner compared with that of two-type developed countries.An analysis of"two competitions"that China is facing shows that changing the developing mode is urgent and China should grasp this opportunity in the next five to ten years,which is a key period for this transition.This paper discusses the low-carbon development goals and the three-step process.Low-carbon development does not necessarily restrict economic development.It,however,can expedite the transition of the development mode and this is a low-carbon and green development path.Transition of the development mode includes implementation of China's green and low-carbon energy strategies,low-carbon society construction,development of agriculture and forestry,garbage sorting and utilization,innovation of urbanization,etc.Improvement of national infrastructure construction includes water safety,environment and climate monitoring system,intelligent energy web,basic database,etc.Addressing climate change can significantly improve the nation's basic research level.In summary,it mitigates backward production capability,extensive development,and environmental damage while promoting technological advancement,scientific development,and ecological civilization.
基金Supported by the NNSF of China (10371092)the Foundation of Wuhan University.
文摘The concepts of Markov process in random environment and homogeneous random transition functions are introduced. The necessary and sufficient conditions for homogeneous random transition function are given. The main results in this article are the analytical properties, such as continuity, differentiability, random Kolmogorov backward equation and random Kolmogorov forward equation of homogeneous random transition functions.
基金The Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1838)the Fundamental Research Funds for the Central Universities(No.KYLX16_0270)the Foundation of China Scholarship Council(No.201606090240)
文摘The discrete choice model is used to estimate the walking access area of rail transit stations while considering the influence of existing competition from other traffic modes. The acceptable walking access area is determined according to the willingness of passengers to walk who prefer rail transit compared with bus and automobile. Empirical studies were conducted using the survey data of six stations from the rail transit in Nanjing, China. The results indicate that the rail transit is more preferable compared with bus and private automobile in this case when excluding the influence of individual and environmental factors. It is found that passengers tend to underestimate their willingness to walk. The acceptable walking access area of every rail transit station is different from each other. Suburban stations generally have a larger walking access area than downtown stations. In addition, a better walking environment and a scarcer surrounding traffic environment can also lead to a larger walking area. The model was confirmed to be effective and reasonable according to the model validation. This study can be of benefit to the passenger transportation demand estimation in the location planning and evaluation of rail transit stations.