The present work studies the chemical constituents from marine-derived streptomyces 3320^# and their antitumor activities. The n-BuOH extract of the ferment broth of 3320^# was chromatographed on silica gel, Sephadex ...The present work studies the chemical constituents from marine-derived streptomyces 3320^# and their antitumor activities. The n-BuOH extract of the ferment broth of 3320^# was chromatographed on silica gel, Sephadex LH-20, ODS columns and HPLC to separate the compounds with antitoumor activities. Their structures were identified using IR, UV, NMR, MS spectroscopic techniques and compared with published data. The antitumor activities of the isolates were assayed using SRB method and flow cytometry assay, accompanied with the morphological observation of the cells under light micro- scope against mammalian tsFT210 cells. Ten compounds, cyclo-(Ala-Leu) 1, cyclo-(Ala-Ile) 2, cyclo-(Ala-Val) 3, cyclo- (Phe-Pro) 4, cyclo-(Phe-Gly)5, cyclo-(Leu-Pro)6, 1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid 7, N-(4- hydroxyphenethyl) acetamide 8, 4-methyoxy-l-(2-hydroxy) ethylbenzene 9 and uridine 10, were isolated from the ferment broth of streptomyces 3320^# . Among them, compounds 6, 7, 8 and 10 showed potent cytotoxicity against the tsFT210 cell with the IC50 values of 3.6, 7.2, 5.2 and 1.6 mmol L-1, respectively. Compounds 8, 10 also exhibited apoptosis inducing activity under 2.0 mmol L-1. Compounds 6, 7, 8 and 10 are the principle bioactive constituents responsible for the antitumor activities of marine streptomyces 3320^#. Compound 7 was isolated from this species for the first time.展开更多
A mutant (GQQ-M6) of a Sponge-Derived streptomyces sp. GQQ-10 obtained by UV-induced mutation was used for producing prodiginines (PGs). Single factor experiments and orthogonal array design (OAD) methods were employe...A mutant (GQQ-M6) of a Sponge-Derived streptomyces sp. GQQ-10 obtained by UV-induced mutation was used for producing prodiginines (PGs). Single factor experiments and orthogonal array design (OAD) methods were employed for medium optimization. In the single factor method, the effects of soluble starch, glucose, soybean flour, yeast extract and sodium acetate on PGs production were investigated individually. In the subsequent OAD experiments, the concentrations of these 5 key nutritional components combined with salinity were further adjusted. The mutant strain GQQ-M6 gave a 2.2-fold higher PGs production than that of the parent strain; OAD experiments offered a PGs yield of 61mg L-1, which was 10 times higher than that of the initial GQQ-10 strain under the original cultivation mode.展开更多
A new isochromanone,cladosporinisochromanone(1),accompanied by 15 known compounds(2–16)were obtained from secondary metabolites produced by marine-derived fungus Cladosporium sp.DLT-5.NMR and HRESIMS spectra elucidat...A new isochromanone,cladosporinisochromanone(1),accompanied by 15 known compounds(2–16)were obtained from secondary metabolites produced by marine-derived fungus Cladosporium sp.DLT-5.NMR and HRESIMS spectra elucidation determined the planar structure of 1.Subsequent electronic circular dichroism(ECD)experiment assigned the absolute configuration of 1.Compounds 1,2,4–6,and 10 displayed different degrees of neuroprotective activities on human neuroblastoma cells SH-SY5Y.Five compounds(1,3–5,and 13)emerged resistance to protein tyrosine phosphatase 1B(PTP1B),further kinetic analysis and molecular docking study indicated that the most potent compound 13(IC50value of 10.74±0.61μmol/L)was found as a noncompetitive inhibitor for PTP1B.Surface plasmon resonance(SPR)and molecular docking studies also demonstrated the interaction between compound 12 and Niemann-Pick C1 Like 1(NPC1L1),which has been identified as significant therapeutic target for hypercholesteremia.In addition,compounds 3,6,and 14 showed attractive inhibitory activity against the phytopathogenic fungi:Colletotrichum capsici.Therefore,library of Cladosporium metabolites is enriched and new active uses of known compounds are explored.展开更多
To research the potential ability of marine-derived actinomycetes to act as biocatalysts, 8 Micromonospora strains and 5 Streptomyces strains were screened. Two recommended media (227 and 1076 media) and 2 modified me...To research the potential ability of marine-derived actinomycetes to act as biocatalysts, 8 Micromonospora strains and 5 Streptomyces strains were screened. Two recommended media (227 and 1076 media) and 2 modified media (1076-25% and P-1076-25% media) for liquid culture of these marine-derived actinomycetes were tested. As a result, 2 Micromonospora strains (Micromonospora sp. NBRC107096 and 107097) cultured with the 1076-25% medium and 2 Streptomyces strains (Streptomyces tateyamensis NBRC105048 and Streptomyces sp. NBRC105896) cultured with P-1076-25% medium showed a good growth. The stereoselective reduction of α-keto esters using these 4 actinomycetes was tested. As a result, it was found that these strains had a reducing activity toward various α-keto esters. The introduction of L-glutamate or sucrose as an additive remarkably increased the conversion ratios in the reduction of substrates by the Micromonospora strain. Furthermore, in the presence of L-alanine, Streptomyces tateyamensis NBRC105048 reduced ethyl pyruvate, ethyl 2-oxobutanoate, ethyl 2-oxopentanoate, ethyl 2-oxohexanoate, and ethyl 3-methyl-2-oxobutyrate to the corresponding α-hydroxy ester with a high conversion ratio and with excellent enantiomeric excess. Thus, we found that these marine-derived actinomycetes have great potential to be used as biocatalysts for stereoselective reduction of carbonyl compounds.展开更多
A Streptomyces cameroonensis based bioformulation (SCaB) has been developed and shown to be stable and effective in controlling the early proliferation of P. megakarya and promoting the growth of cocoa seedlings in nu...A Streptomyces cameroonensis based bioformulation (SCaB) has been developed and shown to be stable and effective in controlling the early proliferation of P. megakarya and promoting the growth of cocoa seedlings in nursery. This study was carried out to explore the molecular mechanisms associated with the interaction of SCaB, cocoa seedlings, and the pathogen during the early stages of seedling growth in the nursery. For this purpose, seedling treatment with 10% W/W SCaB under greenhouse conditions evaluated SCaB’s capacity to stimulate the defense mechanisms in cocoa. Agronomic growth parameters and the level of induction of defense-associated compounds were analyzed. Real-time (rt) PCR was used to assess the level of expression of defense genes. Here, we showed that the application of SCaB as a seedling treatment enhanced the growth of cocoa seedlings in the nursery by an average of 15.6% after 30 days of growth and led to an average reduction in disease severity of 64% when challenged with P. megakarya. The latter led to an increased synthesis of total phenolic compounds, flavonoids, chitinases, peroxidases, and β-1,3-glucanases and an induced up-regulation of TcChiB, TcGlu-1, TcPer-1, and TcMYBPA genes. This research provides a basis for the optimization of beneficial microorganisms as a viable alternative to chemical fungicides used in disease suppression.展开更多
基金supported by the Project of Chinese National Programs for High Technology Research and Development(No.2003AA624020)the National Natural Science Foundation of China(Nos.30472136 and 30470196)Shandong Province and Qingdao Natural Science Foundation(Nos.Z2001C01 and 04-2-JZ-81).
文摘The present work studies the chemical constituents from marine-derived streptomyces 3320^# and their antitumor activities. The n-BuOH extract of the ferment broth of 3320^# was chromatographed on silica gel, Sephadex LH-20, ODS columns and HPLC to separate the compounds with antitoumor activities. Their structures were identified using IR, UV, NMR, MS spectroscopic techniques and compared with published data. The antitumor activities of the isolates were assayed using SRB method and flow cytometry assay, accompanied with the morphological observation of the cells under light micro- scope against mammalian tsFT210 cells. Ten compounds, cyclo-(Ala-Leu) 1, cyclo-(Ala-Ile) 2, cyclo-(Ala-Val) 3, cyclo- (Phe-Pro) 4, cyclo-(Phe-Gly)5, cyclo-(Leu-Pro)6, 1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid 7, N-(4- hydroxyphenethyl) acetamide 8, 4-methyoxy-l-(2-hydroxy) ethylbenzene 9 and uridine 10, were isolated from the ferment broth of streptomyces 3320^# . Among them, compounds 6, 7, 8 and 10 showed potent cytotoxicity against the tsFT210 cell with the IC50 values of 3.6, 7.2, 5.2 and 1.6 mmol L-1, respectively. Compounds 8, 10 also exhibited apoptosis inducing activity under 2.0 mmol L-1. Compounds 6, 7, 8 and 10 are the principle bioactive constituents responsible for the antitumor activities of marine streptomyces 3320^#. Compound 7 was isolated from this species for the first time.
基金supported by the National Natural Science Foundation of China (Nos.30973627 and 30772640)the public projects of the State Oceanic Administration (No.2010418022-3)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0944)the Natural Science Fund of Shandong Province,P.R.China (No.ZR2009CZ016)
文摘A mutant (GQQ-M6) of a Sponge-Derived streptomyces sp. GQQ-10 obtained by UV-induced mutation was used for producing prodiginines (PGs). Single factor experiments and orthogonal array design (OAD) methods were employed for medium optimization. In the single factor method, the effects of soluble starch, glucose, soybean flour, yeast extract and sodium acetate on PGs production were investigated individually. In the subsequent OAD experiments, the concentrations of these 5 key nutritional components combined with salinity were further adjusted. The mutant strain GQQ-M6 gave a 2.2-fold higher PGs production than that of the parent strain; OAD experiments offered a PGs yield of 61mg L-1, which was 10 times higher than that of the initial GQQ-10 strain under the original cultivation mode.
基金Supported by the China Agriculture Research System of MOF and MARA(CARS-21)the Financial Fund of the Ministry of Agriculture and Rural Affairs,China(No.NFZX2021)the National Natural Science Foundation of China(No.81973568)。
文摘A new isochromanone,cladosporinisochromanone(1),accompanied by 15 known compounds(2–16)were obtained from secondary metabolites produced by marine-derived fungus Cladosporium sp.DLT-5.NMR and HRESIMS spectra elucidation determined the planar structure of 1.Subsequent electronic circular dichroism(ECD)experiment assigned the absolute configuration of 1.Compounds 1,2,4–6,and 10 displayed different degrees of neuroprotective activities on human neuroblastoma cells SH-SY5Y.Five compounds(1,3–5,and 13)emerged resistance to protein tyrosine phosphatase 1B(PTP1B),further kinetic analysis and molecular docking study indicated that the most potent compound 13(IC50value of 10.74±0.61μmol/L)was found as a noncompetitive inhibitor for PTP1B.Surface plasmon resonance(SPR)and molecular docking studies also demonstrated the interaction between compound 12 and Niemann-Pick C1 Like 1(NPC1L1),which has been identified as significant therapeutic target for hypercholesteremia.In addition,compounds 3,6,and 14 showed attractive inhibitory activity against the phytopathogenic fungi:Colletotrichum capsici.Therefore,library of Cladosporium metabolites is enriched and new active uses of known compounds are explored.
文摘To research the potential ability of marine-derived actinomycetes to act as biocatalysts, 8 Micromonospora strains and 5 Streptomyces strains were screened. Two recommended media (227 and 1076 media) and 2 modified media (1076-25% and P-1076-25% media) for liquid culture of these marine-derived actinomycetes were tested. As a result, 2 Micromonospora strains (Micromonospora sp. NBRC107096 and 107097) cultured with the 1076-25% medium and 2 Streptomyces strains (Streptomyces tateyamensis NBRC105048 and Streptomyces sp. NBRC105896) cultured with P-1076-25% medium showed a good growth. The stereoselective reduction of α-keto esters using these 4 actinomycetes was tested. As a result, it was found that these strains had a reducing activity toward various α-keto esters. The introduction of L-glutamate or sucrose as an additive remarkably increased the conversion ratios in the reduction of substrates by the Micromonospora strain. Furthermore, in the presence of L-alanine, Streptomyces tateyamensis NBRC105048 reduced ethyl pyruvate, ethyl 2-oxobutanoate, ethyl 2-oxopentanoate, ethyl 2-oxohexanoate, and ethyl 3-methyl-2-oxobutyrate to the corresponding α-hydroxy ester with a high conversion ratio and with excellent enantiomeric excess. Thus, we found that these marine-derived actinomycetes have great potential to be used as biocatalysts for stereoselective reduction of carbonyl compounds.
文摘A Streptomyces cameroonensis based bioformulation (SCaB) has been developed and shown to be stable and effective in controlling the early proliferation of P. megakarya and promoting the growth of cocoa seedlings in nursery. This study was carried out to explore the molecular mechanisms associated with the interaction of SCaB, cocoa seedlings, and the pathogen during the early stages of seedling growth in the nursery. For this purpose, seedling treatment with 10% W/W SCaB under greenhouse conditions evaluated SCaB’s capacity to stimulate the defense mechanisms in cocoa. Agronomic growth parameters and the level of induction of defense-associated compounds were analyzed. Real-time (rt) PCR was used to assess the level of expression of defense genes. Here, we showed that the application of SCaB as a seedling treatment enhanced the growth of cocoa seedlings in the nursery by an average of 15.6% after 30 days of growth and led to an average reduction in disease severity of 64% when challenged with P. megakarya. The latter led to an increased synthesis of total phenolic compounds, flavonoids, chitinases, peroxidases, and β-1,3-glucanases and an induced up-regulation of TcChiB, TcGlu-1, TcPer-1, and TcMYBPA genes. This research provides a basis for the optimization of beneficial microorganisms as a viable alternative to chemical fungicides used in disease suppression.