The Cretaceous Ambohiby Complex is an alkaline ring complex located in the west central part of Madagascar and covers a mountainous area of approximate 225 km^2.The complex intrudes into Precambrian basement gneisses ...The Cretaceous Ambohiby Complex is an alkaline ring complex located in the west central part of Madagascar and covers a mountainous area of approximate 225 km^2.The complex intrudes into Precambrian basement gneisses and is dominated by alkaline mafic to felsic rocks with sodic mineralogies. Pyroxenes are generally aegirine,aegirine-augite,and hedenbergite and commonly occur in granites,展开更多
We present the optical to mid-infrared SEDs of 11 debris disk candidates from Spitzer SWIRE fields. All the candidates are selected from SWIRE 24 μm sources matched with both the SDSS star catalog and the 2MASS point...We present the optical to mid-infrared SEDs of 11 debris disk candidates from Spitzer SWIRE fields. All the candidates are selected from SWIRE 24 μm sources matched with both the SDSS star catalog and the 2MASS point source catalog. They show an excess in the mid-infrared at 24 μm (Ks-[24]vega 〉 0.44), indicating the presence of a circumstellar dust disk. The observed optical spectra show that they are all late-type main-sequence stars covering the spectral types of FGKM. Their fractional luminosities are well above 5× 10-5, even up to the high fractional luminosity of 1×10-3. The high galactic latitudes of SWIRE fields indicate that most of these candidates could belong to the oldest stars in the thick disk. Our results indicate that high fractional luminosity debris disks could exist in old solar-like star systems, though they are still quite rare. Their discovery at high galactic latitudes also provides an exellent opportunity for further study of the properties and evolution of debris disks in regions of the Galaxy with low densities of ISM, called ISM poor environments.展开更多
Water yield, water supply and quality, wildlife habitat, and ecosystem productivity and services are important societal concerns for natural resource management in the 21st century. Watershed-scale ecohydrologic studi...Water yield, water supply and quality, wildlife habitat, and ecosystem productivity and services are important societal concerns for natural resource management in the 21st century. Watershed-scale ecohydrologic studies can provide needed context for addressing complex spatial and temporal dynamics of these functions and services. This study was conducted on the 5240 ha Turkey Creek watershed (WS 78) draining a 3rd order stream on the Santee Experimental Forest within the South Carolina Atlantic Coastal Plain, USA. The study objectives were to present the hydrologic characteristics of this relatively undisturbed, except by a hurricane (Hugo, 1989), forested water-shed and to discuss key elements for watershed management, including water resource assessment (WRM), modeling integrated water resources management, environmental assessment, land use planning, social impact assessment, and information management. Runoff coefficients, flow duration curves, flood and low flow frequency curves, surface and ground water yields were assessed as elements of the WRM. Results from the last 10 years of interdisciplinary studies have also advanced the understanding of coastal ecohydrologic characteristics and processes, water balance, and their modeling including the need of high resolution LiDAR data. For example, surface water dynamics were shown to be regulated primarily by the water table, dependent upon pre- cipitation and evapotranspiration (ET). Analysis of pre- and post-Hugo streamflow data showed somewhat lower but insignificant (α = 0.05) mean annual flow but increased frequency of larger flows for the post-Hugo compared with the pre-Hugo level. However, there was no significant difference in mean annual ET, potentially indicating the resiliency of this coastal forest. Although the information from this study may be useful for comparison of coastal ecohydrologic issues, it is becoming increasingly clear that multi-site studies may be warranted to understand these complex systems in the face of climate change, sea level rise, and increasing development in coastal regions.展开更多
文摘The Cretaceous Ambohiby Complex is an alkaline ring complex located in the west central part of Madagascar and covers a mountainous area of approximate 225 km^2.The complex intrudes into Precambrian basement gneisses and is dominated by alkaline mafic to felsic rocks with sodic mineralogies. Pyroxenes are generally aegirine,aegirine-augite,and hedenbergite and commonly occur in granites,
基金supported by the National Natural Science Foundation of China (Grant Nos. 11173030, 11078017, 10833006, 10978014 and 10773014)partly supported by the China Ministry of Science and Technology under the State Key Development Program for Basic Research (2007CB815400 and 2012CB821800)S. Wolf was supported by the German Research Foundation (DFG) through the Emmy Noether grant WO 857/2
文摘We present the optical to mid-infrared SEDs of 11 debris disk candidates from Spitzer SWIRE fields. All the candidates are selected from SWIRE 24 μm sources matched with both the SDSS star catalog and the 2MASS point source catalog. They show an excess in the mid-infrared at 24 μm (Ks-[24]vega 〉 0.44), indicating the presence of a circumstellar dust disk. The observed optical spectra show that they are all late-type main-sequence stars covering the spectral types of FGKM. Their fractional luminosities are well above 5× 10-5, even up to the high fractional luminosity of 1×10-3. The high galactic latitudes of SWIRE fields indicate that most of these candidates could belong to the oldest stars in the thick disk. Our results indicate that high fractional luminosity debris disks could exist in old solar-like star systems, though they are still quite rare. Their discovery at high galactic latitudes also provides an exellent opportunity for further study of the properties and evolution of debris disks in regions of the Galaxy with low densities of ISM, called ISM poor environments.
文摘Water yield, water supply and quality, wildlife habitat, and ecosystem productivity and services are important societal concerns for natural resource management in the 21st century. Watershed-scale ecohydrologic studies can provide needed context for addressing complex spatial and temporal dynamics of these functions and services. This study was conducted on the 5240 ha Turkey Creek watershed (WS 78) draining a 3rd order stream on the Santee Experimental Forest within the South Carolina Atlantic Coastal Plain, USA. The study objectives were to present the hydrologic characteristics of this relatively undisturbed, except by a hurricane (Hugo, 1989), forested water-shed and to discuss key elements for watershed management, including water resource assessment (WRM), modeling integrated water resources management, environmental assessment, land use planning, social impact assessment, and information management. Runoff coefficients, flow duration curves, flood and low flow frequency curves, surface and ground water yields were assessed as elements of the WRM. Results from the last 10 years of interdisciplinary studies have also advanced the understanding of coastal ecohydrologic characteristics and processes, water balance, and their modeling including the need of high resolution LiDAR data. For example, surface water dynamics were shown to be regulated primarily by the water table, dependent upon pre- cipitation and evapotranspiration (ET). Analysis of pre- and post-Hugo streamflow data showed somewhat lower but insignificant (α = 0.05) mean annual flow but increased frequency of larger flows for the post-Hugo compared with the pre-Hugo level. However, there was no significant difference in mean annual ET, potentially indicating the resiliency of this coastal forest. Although the information from this study may be useful for comparison of coastal ecohydrologic issues, it is becoming increasingly clear that multi-site studies may be warranted to understand these complex systems in the face of climate change, sea level rise, and increasing development in coastal regions.