China's designation of the "21 st-century Maritime Silk Road"(MSR) region is of extraordinary significance to its maritime rights, transportation security, and socio-economic development. We developed a ...China's designation of the "21 st-century Maritime Silk Road"(MSR) region is of extraordinary significance to its maritime rights, transportation security, and socio-economic development. We developed a technical framework allowing the use of "big data" derived from the Automatic Identification System(AIS, an automatic ship-tracking network) for two purposes: the accurate mapping of oil tanker trajectories and the creation of heat maps showing the relative use of oil tanker routes and marine shipping chokepoints. We then applied these methods to 1.5 billion AIS records collected within the MSR in 2014 to statistically identify and analyze busy routes, areas, and chokepoints in this strategic region. Our results demonstrate that the proposed framework can provide an effective analysis of oil movements based on large-scale AIS datasets, helping researchers and policy makers better understand the footprint and strategic implications of maritime oil transportation in the MSR region.展开更多
In recent years, maritime transportation has played an important role in global economy development. As a result, ship traffic has become more congested. Moreover, ship navigation is susceptible to weather and environ...In recent years, maritime transportation has played an important role in global economy development. As a result, ship traffic has become more congested. Moreover, ship navigation is susceptible to weather and environmental conditions, and in some cases, it may become dangerous. Therefore, vessels are subjected to high-risk navigation conditions. To understand the latent risk of ship navigation, this study focused on the actual ship behavior. Thus, an analysis of ship behavior was carded out using historical ship navigation based on automatic identification system data. Consequently, a dynamic analysis of the speed and encounter situation was performed. One of the main results of this work was the understanding of the latent risk involved in ships navigating the Seto Inland Sea, which is one of the most congested routes in Japan. Moreover, the risk areas were obtained, and visualized using a geographical information system. The obtained results can be applied to ensure safe navigation and the development of a safe and efficient navigation model.展开更多
基金supported by the National Key R&D Plan(Grant No.2017YFB0504205)the National Natural Science Foundation of China(Grant Nos.41622109,41371017)
文摘China's designation of the "21 st-century Maritime Silk Road"(MSR) region is of extraordinary significance to its maritime rights, transportation security, and socio-economic development. We developed a technical framework allowing the use of "big data" derived from the Automatic Identification System(AIS, an automatic ship-tracking network) for two purposes: the accurate mapping of oil tanker trajectories and the creation of heat maps showing the relative use of oil tanker routes and marine shipping chokepoints. We then applied these methods to 1.5 billion AIS records collected within the MSR in 2014 to statistically identify and analyze busy routes, areas, and chokepoints in this strategic region. Our results demonstrate that the proposed framework can provide an effective analysis of oil movements based on large-scale AIS datasets, helping researchers and policy makers better understand the footprint and strategic implications of maritime oil transportation in the MSR region.
文摘In recent years, maritime transportation has played an important role in global economy development. As a result, ship traffic has become more congested. Moreover, ship navigation is susceptible to weather and environmental conditions, and in some cases, it may become dangerous. Therefore, vessels are subjected to high-risk navigation conditions. To understand the latent risk of ship navigation, this study focused on the actual ship behavior. Thus, an analysis of ship behavior was carded out using historical ship navigation based on automatic identification system data. Consequently, a dynamic analysis of the speed and encounter situation was performed. One of the main results of this work was the understanding of the latent risk involved in ships navigating the Seto Inland Sea, which is one of the most congested routes in Japan. Moreover, the risk areas were obtained, and visualized using a geographical information system. The obtained results can be applied to ensure safe navigation and the development of a safe and efficient navigation model.