Upper Carboniferous-Lower Permian volcanic event deposits from two cross sections in Nanpiao, Liaoning Province, and the Daqing Mountains, Inner Mongolia, were examined by systematic rock and mineral identification, d...Upper Carboniferous-Lower Permian volcanic event deposits from two cross sections in Nanpiao, Liaoning Province, and the Daqing Mountains, Inner Mongolia, were examined by systematic rock and mineral identification, differential thermal analysis, X-ray diffraction, scanning electron microscopy and trace element and rare earth element quantitative analysis. According to the results, twelve sequences of volcanic event deposits have been distinguished from bottom to top, including 34–39 volcanic event layers. As these layers each have their own distinctive petrological, mineralogical and geochemical characteristics and were derived from the same source, they provide new evidence for further ascertaining the distribution characteristics of volcanic event deposits on the northern margin of the North China plate and carrying out the stratigraphic correlation using volcanic event layers as marker beds.展开更多
基金This research was supported by National Natural Science Foundation of China grant 49762094.
文摘Upper Carboniferous-Lower Permian volcanic event deposits from two cross sections in Nanpiao, Liaoning Province, and the Daqing Mountains, Inner Mongolia, were examined by systematic rock and mineral identification, differential thermal analysis, X-ray diffraction, scanning electron microscopy and trace element and rare earth element quantitative analysis. According to the results, twelve sequences of volcanic event deposits have been distinguished from bottom to top, including 34–39 volcanic event layers. As these layers each have their own distinctive petrological, mineralogical and geochemical characteristics and were derived from the same source, they provide new evidence for further ascertaining the distribution characteristics of volcanic event deposits on the northern margin of the North China plate and carrying out the stratigraphic correlation using volcanic event layers as marker beds.