Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerabl...Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments.展开更多
According to BBC News,online hate speech increased by 20%during the COVID-19 pandemic.Hate speech from anonymous users can result in psychological harm,including depression and trauma,and can even lead to suicide.Mali...According to BBC News,online hate speech increased by 20%during the COVID-19 pandemic.Hate speech from anonymous users can result in psychological harm,including depression and trauma,and can even lead to suicide.Malicious online comments are increasingly becoming a social and cultural problem.It is therefore critical to detect such comments at the national level and detect malicious users at the corporate level.To achieve a healthy and safe Internet environment,studies should focus on institutional and technical topics.The detection of toxic comments can create a safe online environment.In this study,to detect malicious comments,we used approxi-mately 9,400 examples of hate speech from a Korean corpus of entertainment news comments.We developed toxic comment classification models using supervised learning algorithms,including decision trees,random forest,a support vector machine,and K-nearest neighbors.The proposed model uses random forests to classify toxic words,achieving an F1-score of 0.94.We analyzed the trained model using the permutation feature importance,which is an explanatory machine learning method.Our experimental results confirmed that the toxic comment classifier properly classified hate words used in Korea.Using this research methodology,the proposed method can create a healthy Internet environment by detecting malicious comments written in Korean.展开更多
Internet of things(IoT)and cloud computing(CC)becomes widespread in different application domains such as business,e-commerce,healthcare,etc.The recent developments of IoT technology have led to an increase in large a...Internet of things(IoT)and cloud computing(CC)becomes widespread in different application domains such as business,e-commerce,healthcare,etc.The recent developments of IoT technology have led to an increase in large amounts of data from various sources.In IoT enabled cloud environment,load scheduling remains a challenging process which is applied for ensuring network stability with maximum resource utilization.The load scheduling problem was regarded as an optimization problem that is solved by metaheuristics.In this view,this study develops a new Circle Chaotic Chameleon Swarm Optimization based Load Scheduling(C3SOA-LS)technique for IoT enabled cloud environment.The proposed C3SOA-LS technique intends to effectually schedule the tasks and balance the load uniformly in such a way that maximum resource utilization can be accomplished.Besides,the presented C3SOA-LS model involves the design of circle chaotic mapping(CCM)with the traditional chameleon swarm optimization(CSO)algorithm for improving the exploration process,shows the novelty of the work.The proposed C3SOA-LS model computes an objective with the minimization of energy consumption and makespan.The experimental outcome implied that the C3SOA-LS model has showcased improved performance and uniformly balances the load over other approaches.展开更多
In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost e...In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost electrical fault location, which contributes to improving quality of service, particularly by shortening interruption time spans in mid-voltage grids. The implementation makes use of MQTT protocol with an intensive use of Internet of things (IoT) environment which guarantees the following properties within the automation process: Advanced reports and statistics, remote command execution on one or more units (groups of units), detailed monitoring of remote units and custom alarm mechanism and firmware upgrade on one or more units (groups of units). This kind of implementation is the first one in Colombia and it is able to automatically recover from an N-1 fault.展开更多
Nowadays most of the cloud applications process large amount of data to provide the desired results. The Internet environment, the enterprise network advertising, network marketing plan, need partner sites selected as...Nowadays most of the cloud applications process large amount of data to provide the desired results. The Internet environment, the enterprise network advertising, network marketing plan, need partner sites selected as carrier and publishers. Website through static pages, dynamic pages, floating window, AD links, take the initiative to push a variety of ways to show the user enterprise marketing solutions, when the user access to web pages, use eye effect and concentration effect, attract users through reading web pages or click the page again, let the user detailed comprehensive understanding of the marketing plan, which affects the user' s real purchase decisions. Therefore, we combine the cloud environment with search engine optimization technique, the result shows that our method outperforms compared with other approaches.展开更多
Studies the design of distributed virtual environments (DVEs) for tele-multi-robotics. The proposed design, incorporating two models ( distributlon-supported model and VE-supported model), attempts to represent co...Studies the design of distributed virtual environments (DVEs) for tele-multi-robotics. The proposed design, incorporating two models ( distributlon-supported model and VE-supported model), attempts to represent common functionality, communication issues, and requirements found in multi-operator DVEs. The distribution-supported model concentrates on the introduction of computer-supported collaborative work (CSCW) to realize the coordination of multi-operators, while the VE-supported model concentrates on the utilization of an object-oriented approach to strengthen the expandability and robustness of the system. Finally, the configuration anti running environments of the system are given.展开更多
Environment plays a vital role in the breeding process of broilers. In order to effectively monitor and control the breeding environment of broilers, a broiler breeding environment monitoring and alarm system based on...Environment plays a vital role in the breeding process of broilers. In order to effectively monitor and control the breeding environment of broilers, a broiler breeding environment monitoring and alarm system based on internet of things is studied and established. The system adopts the narrow band internet of things communication technology, and can transmit the temperature, humidity, illumination and ammonia and other environ-mental data in the chicken house remotely through terminal collection unified interface device. Meantime, it realizes the control of fans, wet cur-tains, small windows and illumination in the chicken house by threshold method. The system software is designed and implemented by C#, SQL Server, WeX5 and other development tools, including platform terminal and enterprise terminal. Since its operation, the system is featured by stable state, reliable data and timely alarm, which solves the problem of unified control of different sensors and realizes the effective control of house envi-ronment.展开更多
New technologies that take advantage of the emergence of massive Internet of Things(IoT)and a hyper-connected network environment have rapidly increased in recent years.These technologies are used in diverse environme...New technologies that take advantage of the emergence of massive Internet of Things(IoT)and a hyper-connected network environment have rapidly increased in recent years.These technologies are used in diverse environments,such as smart factories,digital healthcare,and smart grids,with increased security concerns.We intend to operate Security Orchestration,Automation and Response(SOAR)in various environments through new concept definitions as the need to detect and respond automatically to rapidly increasing security incidents without the intervention of security personnel has emerged.To facilitate the understanding of the security concern involved in this newly emerging area,we offer the definition of Internet of Blended Environment(IoBE)where various convergence environments are interconnected and the data analyzed in automation.We define Blended Threat(BT)as a security threat that exploits security vulnerabilities through various attack surfaces in the IoBE.We propose a novel SOAR-CUBE architecture to respond to security incidents with minimal human intervention by automating the BT response process.The Security Orchestration,Automation,and Response(SOAR)part of our architecture is used to link heterogeneous security technologies and the threat intelligence function that collects threat data and performs a correlation analysis of the data.SOAR is operated under Collaborative Units of Blended Environment(CUBE)which facilitates dynamic exchanges of data according to the environment applied to the IoBE by distributing and deploying security technologies for each BT type and dynamically combining them according to the cyber kill chain stage to minimize the damage and respond efficiently to BT.展开更多
Internet of Things(IoT)security is the act of securing IoT devices and networks.IoT devices,including industrial machines,smart energy grids,and building automation,are extremely vulnerable.With the goal of shielding ...Internet of Things(IoT)security is the act of securing IoT devices and networks.IoT devices,including industrial machines,smart energy grids,and building automation,are extremely vulnerable.With the goal of shielding network systems from illegal access in cloud servers and IoT systems,Intrusion Detection Systems(IDSs)and Network-based Intrusion Prevention Systems(NBIPSs)are proposed in this study.An intrusion prevention system is proposed to realize NBIPS to safeguard top to bottom engineering.The proposed NBIPS inspects network activity streams to identify and counteract misuse instances.The NBIPS is usually located specifically behind a firewall,and it provides a reciprocal layer of investigation that adversely chooses unsafe substances.Networkbased IPS sensors can be installed either in an inline or a passive model.An inline sensor is installed to monitor the traffic passing through it.The sensors are installed to stop attacks by blocking the traffic using an IoT signature-based protocol.展开更多
Intelligent Transportation Systems(ITS)have become a vital part in improving human lives and modern economy.It aims at enhancing road safety and environmental quality.There is a tremendous increase observed in the num...Intelligent Transportation Systems(ITS)have become a vital part in improving human lives and modern economy.It aims at enhancing road safety and environmental quality.There is a tremendous increase observed in the number of vehicles in recent years,owing to increasing population.Each vehicle has its own individual emission rate;however,the issue arises when the emission rate crosses a standard value.Owing to the technological advances made in Artificial Intelligence(AI)techniques,it is easy to leverage it to develop prediction approaches so as to monitor and control air pollution.The current research paper presents Oppositional Shark Shell Optimization with Hybrid Deep Learning Model for Air Pollution Monitoring(OSSOHDLAPM)in ITS environment.The proposed OSSO-HDLAPM technique includes a set of sensors embedded in vehicles to measure the level of pollutants.In addition,hybridized Convolution Neural Network with Long Short-Term Memory(HCNN-LSTM)model is used to predict pollutant level based on the data attained earlier by the sensors.In HCNN-LSTM model,the hyperparameters are selected and optimized using OSSO algorithm.In order to validate the performance of the proposed OSSO-HDLAPM technique,a series of experiments was conducted and the obtained results showcase the superior performance of OSSO-HDLAPM technique under different evaluation parameters.展开更多
文摘Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments.
文摘According to BBC News,online hate speech increased by 20%during the COVID-19 pandemic.Hate speech from anonymous users can result in psychological harm,including depression and trauma,and can even lead to suicide.Malicious online comments are increasingly becoming a social and cultural problem.It is therefore critical to detect such comments at the national level and detect malicious users at the corporate level.To achieve a healthy and safe Internet environment,studies should focus on institutional and technical topics.The detection of toxic comments can create a safe online environment.In this study,to detect malicious comments,we used approxi-mately 9,400 examples of hate speech from a Korean corpus of entertainment news comments.We developed toxic comment classification models using supervised learning algorithms,including decision trees,random forest,a support vector machine,and K-nearest neighbors.The proposed model uses random forests to classify toxic words,achieving an F1-score of 0.94.We analyzed the trained model using the permutation feature importance,which is an explanatory machine learning method.Our experimental results confirmed that the toxic comment classifier properly classified hate words used in Korea.Using this research methodology,the proposed method can create a healthy Internet environment by detecting malicious comments written in Korean.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 1/322/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R136)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4340237DSR09).
文摘Internet of things(IoT)and cloud computing(CC)becomes widespread in different application domains such as business,e-commerce,healthcare,etc.The recent developments of IoT technology have led to an increase in large amounts of data from various sources.In IoT enabled cloud environment,load scheduling remains a challenging process which is applied for ensuring network stability with maximum resource utilization.The load scheduling problem was regarded as an optimization problem that is solved by metaheuristics.In this view,this study develops a new Circle Chaotic Chameleon Swarm Optimization based Load Scheduling(C3SOA-LS)technique for IoT enabled cloud environment.The proposed C3SOA-LS technique intends to effectually schedule the tasks and balance the load uniformly in such a way that maximum resource utilization can be accomplished.Besides,the presented C3SOA-LS model involves the design of circle chaotic mapping(CCM)with the traditional chameleon swarm optimization(CSO)algorithm for improving the exploration process,shows the novelty of the work.The proposed C3SOA-LS model computes an objective with the minimization of energy consumption and makespan.The experimental outcome implied that the C3SOA-LS model has showcased improved performance and uniformly balances the load over other approaches.
文摘In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost electrical fault location, which contributes to improving quality of service, particularly by shortening interruption time spans in mid-voltage grids. The implementation makes use of MQTT protocol with an intensive use of Internet of things (IoT) environment which guarantees the following properties within the automation process: Advanced reports and statistics, remote command execution on one or more units (groups of units), detailed monitoring of remote units and custom alarm mechanism and firmware upgrade on one or more units (groups of units). This kind of implementation is the first one in Colombia and it is able to automatically recover from an N-1 fault.
文摘Nowadays most of the cloud applications process large amount of data to provide the desired results. The Internet environment, the enterprise network advertising, network marketing plan, need partner sites selected as carrier and publishers. Website through static pages, dynamic pages, floating window, AD links, take the initiative to push a variety of ways to show the user enterprise marketing solutions, when the user access to web pages, use eye effect and concentration effect, attract users through reading web pages or click the page again, let the user detailed comprehensive understanding of the marketing plan, which affects the user' s real purchase decisions. Therefore, we combine the cloud environment with search engine optimization technique, the result shows that our method outperforms compared with other approaches.
文摘Studies the design of distributed virtual environments (DVEs) for tele-multi-robotics. The proposed design, incorporating two models ( distributlon-supported model and VE-supported model), attempts to represent common functionality, communication issues, and requirements found in multi-operator DVEs. The distribution-supported model concentrates on the introduction of computer-supported collaborative work (CSCW) to realize the coordination of multi-operators, while the VE-supported model concentrates on the utilization of an object-oriented approach to strengthen the expandability and robustness of the system. Finally, the configuration anti running environments of the system are given.
基金Supported by China Agriculture Research System of MOF and MARA(CARS-41)。
文摘Environment plays a vital role in the breeding process of broilers. In order to effectively monitor and control the breeding environment of broilers, a broiler breeding environment monitoring and alarm system based on internet of things is studied and established. The system adopts the narrow band internet of things communication technology, and can transmit the temperature, humidity, illumination and ammonia and other environ-mental data in the chicken house remotely through terminal collection unified interface device. Meantime, it realizes the control of fans, wet cur-tains, small windows and illumination in the chicken house by threshold method. The system software is designed and implemented by C#, SQL Server, WeX5 and other development tools, including platform terminal and enterprise terminal. Since its operation, the system is featured by stable state, reliable data and timely alarm, which solves the problem of unified control of different sensors and realizes the effective control of house envi-ronment.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A2C2011391)and was supported by the Ajou University research fund.
文摘New technologies that take advantage of the emergence of massive Internet of Things(IoT)and a hyper-connected network environment have rapidly increased in recent years.These technologies are used in diverse environments,such as smart factories,digital healthcare,and smart grids,with increased security concerns.We intend to operate Security Orchestration,Automation and Response(SOAR)in various environments through new concept definitions as the need to detect and respond automatically to rapidly increasing security incidents without the intervention of security personnel has emerged.To facilitate the understanding of the security concern involved in this newly emerging area,we offer the definition of Internet of Blended Environment(IoBE)where various convergence environments are interconnected and the data analyzed in automation.We define Blended Threat(BT)as a security threat that exploits security vulnerabilities through various attack surfaces in the IoBE.We propose a novel SOAR-CUBE architecture to respond to security incidents with minimal human intervention by automating the BT response process.The Security Orchestration,Automation,and Response(SOAR)part of our architecture is used to link heterogeneous security technologies and the threat intelligence function that collects threat data and performs a correlation analysis of the data.SOAR is operated under Collaborative Units of Blended Environment(CUBE)which facilitates dynamic exchanges of data according to the environment applied to the IoBE by distributing and deploying security technologies for each BT type and dynamically combining them according to the cyber kill chain stage to minimize the damage and respond efficiently to BT.
基金specific grant from any funding agency in public,commercial or not-for-profit sectors.
文摘Internet of Things(IoT)security is the act of securing IoT devices and networks.IoT devices,including industrial machines,smart energy grids,and building automation,are extremely vulnerable.With the goal of shielding network systems from illegal access in cloud servers and IoT systems,Intrusion Detection Systems(IDSs)and Network-based Intrusion Prevention Systems(NBIPSs)are proposed in this study.An intrusion prevention system is proposed to realize NBIPS to safeguard top to bottom engineering.The proposed NBIPS inspects network activity streams to identify and counteract misuse instances.The NBIPS is usually located specifically behind a firewall,and it provides a reciprocal layer of investigation that adversely chooses unsafe substances.Networkbased IPS sensors can be installed either in an inline or a passive model.An inline sensor is installed to monitor the traffic passing through it.The sensors are installed to stop attacks by blocking the traffic using an IoT signature-based protocol.
文摘Intelligent Transportation Systems(ITS)have become a vital part in improving human lives and modern economy.It aims at enhancing road safety and environmental quality.There is a tremendous increase observed in the number of vehicles in recent years,owing to increasing population.Each vehicle has its own individual emission rate;however,the issue arises when the emission rate crosses a standard value.Owing to the technological advances made in Artificial Intelligence(AI)techniques,it is easy to leverage it to develop prediction approaches so as to monitor and control air pollution.The current research paper presents Oppositional Shark Shell Optimization with Hybrid Deep Learning Model for Air Pollution Monitoring(OSSOHDLAPM)in ITS environment.The proposed OSSO-HDLAPM technique includes a set of sensors embedded in vehicles to measure the level of pollutants.In addition,hybridized Convolution Neural Network with Long Short-Term Memory(HCNN-LSTM)model is used to predict pollutant level based on the data attained earlier by the sensors.In HCNN-LSTM model,the hyperparameters are selected and optimized using OSSO algorithm.In order to validate the performance of the proposed OSSO-HDLAPM technique,a series of experiments was conducted and the obtained results showcase the superior performance of OSSO-HDLAPM technique under different evaluation parameters.