When learning the structure of a Bayesian network,the search space expands significantly as the network size and the number of nodes increase,leading to a noticeable decrease in algorithm efficiency.Traditional constr...When learning the structure of a Bayesian network,the search space expands significantly as the network size and the number of nodes increase,leading to a noticeable decrease in algorithm efficiency.Traditional constraint-based methods typically rely on the results of conditional independence tests.However,excessive reliance on these test results can lead to a series of problems,including increased computational complexity and inaccurate results,especially when dealing with large-scale networks where performance bottlenecks are particularly evident.To overcome these challenges,we propose a Markov blanket discovery algorithm based on constrained local neighborhoods for constructing undirected independence graphs.This method uses the Markov blanket discovery algorithm to refine the constraints in the initial search space,sets an appropriate constraint radius,thereby reducing the initial computational cost of the algorithm and effectively narrowing the initial solution range.Specifically,the method first determines the local neighborhood space to limit the search range,thereby reducing the number of possible graph structures that need to be considered.This process not only improves the accuracy of the search space constraints but also significantly reduces the number of conditional independence tests.By performing conditional independence tests within the local neighborhood of each node,the method avoids comprehensive tests across the entire network,greatly reducing computational complexity.At the same time,the setting of the constraint radius further improves computational efficiency while ensuring accuracy.Compared to other algorithms,this method can quickly and efficiently construct undirected independence graphs while maintaining high accuracy.Experimental simulation results show that,this method has significant advantages in obtaining the structure of undirected independence graphs,not only maintaining an accuracy of over 96%but also reducing the number of conditional independence tests by at least 50%.This significant performance improvement is due to the effective constraint on the search space and the fine control of computational costs.展开更多
针对高维数据下贝叶斯网络结构学习精度和效率低的问题,提出一种基于归一化互信息和近似马尔可夫毯的特征选择(feature selection based on normalized mutual information and approximate Markov blanket,FSNMB)算法来获取目标节点的...针对高维数据下贝叶斯网络结构学习精度和效率低的问题,提出一种基于归一化互信息和近似马尔可夫毯的特征选择(feature selection based on normalized mutual information and approximate Markov blanket,FSNMB)算法来获取目标节点的马尔可夫毯(Markov blanket,MB),进一步结合MB和Meek规则实现基于特征选择的局部贝叶斯网络结构(construct local Bayesian network based on feature selection,FSCLBN)算法,提高局部贝叶斯网络结构学习的精度和效率。实验证明,在高维数据中,FSCLBN算法与现存的局部贝叶斯网络结构学习算法相比更具优势。展开更多
最大信息系数(Maximum information coefficient,MIC)可以对变量间的线性和非线性关系,以及非函数依赖关系进行有效度量.本文首先根据最大信息系数理论,提出了一种评价各维特征间以及每维特征与类别间相关性的度量标准,然后提出了基于...最大信息系数(Maximum information coefficient,MIC)可以对变量间的线性和非线性关系,以及非函数依赖关系进行有效度量.本文首先根据最大信息系数理论,提出了一种评价各维特征间以及每维特征与类别间相关性的度量标准,然后提出了基于新度量标准的近似马尔科夫毯特征选择方法,删除冗余特征.在此基础上提出了基于特征排序和近似马尔科夫毯的两阶段特征选择方法,分别对特征的相关性和冗余性进行分析,选择有效的特征子集.在UCI和ASU上的多个公开数据集上的对比实验表明,本文提出的方法总体优于快速相关滤波(Fast correlation-based filter,FCBF)方法,与Relief F,FAST,Lasso和RFS方法相比也具有优势.展开更多
结构分析的隐变量发现方法难以有效地发现隐变量且可解释性较差。基于因果关系和局部结构的不确定性,提出了一种基于局部因果关系分析的隐变量发现算法(hidden variable discovering algorithm based on local causality analysis,LCAHD...结构分析的隐变量发现方法难以有效地发现隐变量且可解释性较差。基于因果关系和局部结构的不确定性,提出了一种基于局部因果关系分析的隐变量发现算法(hidden variable discovering algorithm based on local causality analysis,LCAHD)。LCAHD算法给出了因果结构熵的定义,将因果知识和不确定性知识相融合,以因果关系的不确定性程度作为隐变量存在的判定依据,并对这一依据进行了理论上的论证。LCAHD算法首先通过寻找目标变量的马尔科夫毯来提取局部依赖结构,并基于扰动学习获得扰动数据,联合扰动数据和观测数据学习局部依赖结构中的因果关系;然后利用因果结构熵对局部因果结构中因果关系的不确定性进行度量,并利用隐变量和因果关系不确定性之间的相关性判定条件,确定隐变量的存在性。分别针对标准网络和股票网络进行了实验,结果表明,该算法能准确地确定隐变量的位置,具有较好的解释性。展开更多
基金This work is supported by the National Natural Science Foundation of China(62262016,61961160706,62231010)14th Five-Year Plan Civil Aerospace Technology Preliminary Research Project(D040405)the National Key Laboratory Foundation 2022-JCJQ-LB-006(Grant No.6142411212201).
文摘When learning the structure of a Bayesian network,the search space expands significantly as the network size and the number of nodes increase,leading to a noticeable decrease in algorithm efficiency.Traditional constraint-based methods typically rely on the results of conditional independence tests.However,excessive reliance on these test results can lead to a series of problems,including increased computational complexity and inaccurate results,especially when dealing with large-scale networks where performance bottlenecks are particularly evident.To overcome these challenges,we propose a Markov blanket discovery algorithm based on constrained local neighborhoods for constructing undirected independence graphs.This method uses the Markov blanket discovery algorithm to refine the constraints in the initial search space,sets an appropriate constraint radius,thereby reducing the initial computational cost of the algorithm and effectively narrowing the initial solution range.Specifically,the method first determines the local neighborhood space to limit the search range,thereby reducing the number of possible graph structures that need to be considered.This process not only improves the accuracy of the search space constraints but also significantly reduces the number of conditional independence tests.By performing conditional independence tests within the local neighborhood of each node,the method avoids comprehensive tests across the entire network,greatly reducing computational complexity.At the same time,the setting of the constraint radius further improves computational efficiency while ensuring accuracy.Compared to other algorithms,this method can quickly and efficiently construct undirected independence graphs while maintaining high accuracy.Experimental simulation results show that,this method has significant advantages in obtaining the structure of undirected independence graphs,not only maintaining an accuracy of over 96%but also reducing the number of conditional independence tests by at least 50%.This significant performance improvement is due to the effective constraint on the search space and the fine control of computational costs.
文摘针对高维数据下贝叶斯网络结构学习精度和效率低的问题,提出一种基于归一化互信息和近似马尔可夫毯的特征选择(feature selection based on normalized mutual information and approximate Markov blanket,FSNMB)算法来获取目标节点的马尔可夫毯(Markov blanket,MB),进一步结合MB和Meek规则实现基于特征选择的局部贝叶斯网络结构(construct local Bayesian network based on feature selection,FSCLBN)算法,提高局部贝叶斯网络结构学习的精度和效率。实验证明,在高维数据中,FSCLBN算法与现存的局部贝叶斯网络结构学习算法相比更具优势。
文摘结构分析的隐变量发现方法难以有效地发现隐变量且可解释性较差。基于因果关系和局部结构的不确定性,提出了一种基于局部因果关系分析的隐变量发现算法(hidden variable discovering algorithm based on local causality analysis,LCAHD)。LCAHD算法给出了因果结构熵的定义,将因果知识和不确定性知识相融合,以因果关系的不确定性程度作为隐变量存在的判定依据,并对这一依据进行了理论上的论证。LCAHD算法首先通过寻找目标变量的马尔科夫毯来提取局部依赖结构,并基于扰动学习获得扰动数据,联合扰动数据和观测数据学习局部依赖结构中的因果关系;然后利用因果结构熵对局部因果结构中因果关系的不确定性进行度量,并利用隐变量和因果关系不确定性之间的相关性判定条件,确定隐变量的存在性。分别针对标准网络和股票网络进行了实验,结果表明,该算法能准确地确定隐变量的位置,具有较好的解释性。