期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
MARTENSITE TRANSFORMATION MICROSTRUCTURE OF 40Cr STEEL COMPLEXLY INDUCED BY LASER SHOCK 被引量:2
1
作者 CHEN Ruifang HUA Yinqun CAI Lan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期52-55,共4页
40Cr steel is laser quenched by the NEL-2500A rapidly axial flow CO2 laser. Then the martensite induced by laser quenched is shocked by Nd:YAG laser again. Through comparing and analyzing the appearance and size of m... 40Cr steel is laser quenched by the NEL-2500A rapidly axial flow CO2 laser. Then the martensite induced by laser quenched is shocked by Nd:YAG laser again. Through comparing and analyzing the appearance and size of martensite, the dislocation density in microstmcture between the treated zones by laser quenched and by laser quenched plus laser shock, the following results are shown: The second martensite obtained by laser compound treatment is more fmer compared with those obtained by laser quenched; In the hardened zones obtained by compound treatment, a lot of slender second twin crystal martensites are induced; A lot of more high density dislocation tangles and cellular dislocations are generated. From the transmission electron microscope (TEM) micrograph after compound treatment, there are not only long lath and short nubbly martensites arranged in cross direction, but also massive nubbly and small short nubbly martensites arranged in longitudinal direction. Some martensites look like the broken blocks of quenched martensites. These new martensites are inserted transversely in the quenched martensites with large tangle. And they make quenched martensites break into pieces. Compared with the quenched martensites, the size of fresh martensites are smaller, about 0.3-0.5 μm. 展开更多
关键词 Laser quench Laser shock wave microstructure martensite transformation
下载PDF
Controlled Laser Transformation Hardening of Martensitic Stainless Steel by Pulsed Nd:YAG Laser 被引量:2
2
作者 B.Mahmoudi A.R.Sabour Aghdam M.J.Torkamany 《Journal of Electronic Science and Technology of China》 2010年第1期87-90,共4页
Laser transformation hardening (LTH) was applied to the surface of the AISI 420 martensitic stainless steel by a pulsed Nd:YAG laser to obtain optimum hardness. The influences of process parameters (laser pulse en... Laser transformation hardening (LTH) was applied to the surface of the AISI 420 martensitic stainless steel by a pulsed Nd:YAG laser to obtain optimum hardness. The influences of process parameters (laser pulse energy, duration time, and travel speed) on the depth and hardness of laser treated area were investigated. Image analysis of SEM microstructure of AISI 420 showed that plate-like carbide have almost fully and (30-40)% of globular carbide particles dissolved into the matrix after laser transformation hardening by pulsed laser and the microstructure was refined to obtain controlled tempered martensite microstructure with 450 VHN hardness. 展开更多
关键词 Laser transformation hardening martensitic stainless steel martensite microstructure pulsed Nd:YAG laser.
下载PDF
Overview of the Research and Development for Reduced Activation Ferritic/Martensitic Steel CLF-1 被引量:3
3
作者 WANG Pinghuai XU Zengyu +2 位作者 CHEN Jiming LIU Shi LI Xiongwei 《Southwestern Institute of Physics Annual Report》 2006年第1期162-163,共2页
Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 ... Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 steel and has a fully martensitic microstructure. 展开更多
关键词 Reduced activation ferritic/martensitic steel Tensile properties Fully martensitic microstructure
下载PDF
Cooling rate effects on the structure and transformation behavior of Cu-Zn-Al shape memory alloys
4
作者 Nicoleta-Monica Lohan Marius-Gabriel Suru +1 位作者 Bogdan Pricop Leandru-Gheorghe Bujoreanu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第11期1109-1114,共6页
Different fragments of a hot-rolled and homogenized Cu–Zn–Al shape memory alloy(SMA) were subjected to thermal cycling by means of a differential scanning calorimetric(DSC) device. During thermal cycling, heatin... Different fragments of a hot-rolled and homogenized Cu–Zn–Al shape memory alloy(SMA) were subjected to thermal cycling by means of a differential scanning calorimetric(DSC) device. During thermal cycling, heating was performed at the same constant rate of increasing temperature while cooling was carried out at different rates of decreasing temperature. For each cooling rate, the temperature decreased in the same thermal interval. During each cooling stage, an exothermic peak(maximum) was observed on the DSC thermogram. This peak was associated with forward martensitic transformation. The DSC thermograms were analyzed with PROTEUS software: the critical martensitic transformation start(Ms) and finish(Mf) temperatures were determined by means of integral and tangent methods, and the dissipated heat was evaluated by the area between the corresponding maximum plot and a sigmoid baseline. The effects of the increase in cooling rate, assessed from a calorimetric viewpoint, consisted in the augmentation of the exothermic peak and the delay of direct martensitic transformation. The latter had the tendency to move to lower critical transformation temperatures. The martensite plates changed in morphology by becoming more oriented and by an augmenting in surface relief, which corresponded with the increase in cooling rate as observed by scanning electron microscopy(SEM) and atomic force microscopy(AFM). 展开更多
关键词 copper alloys shape memory effect microstructure phase transformations martensite cooling rate differential scanning calo-rimetry
下载PDF
Microstructure and Mechanical Properties of Martensitic Stainless Steel 6Cr15MoV 被引量:10
5
作者 MA Dang-shen1, CHI Hong-xiao1,2, ZHOU Jian1, YONG Qi-long1,2 (1. Institute for Structural Materials, Central Iron and Steel Research Institute, Beijing 100081, China 2. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第3期56-61,共6页
Martensitic stainless steel containing Cr of 12% to 18%(mass percent) are common utilized in quenching and tempering processes for knife and cutlery steel. The properties obtained in these materials are significantl... Martensitic stainless steel containing Cr of 12% to 18%(mass percent) are common utilized in quenching and tempering processes for knife and cutlery steel. The properties obtained in these materials are significantly influ- enced by matrix composition after heat treatment, especially as Cr and C content. Comprehensive considered the hardness and corrosion resistance, a new type martensitic stainless steel 6Crl5MoV has been developed. The effect of heat treatment processes on microstructure and mechanical properties of 6Crl5MoV martensitic stainless steel is emphatically researched. Thermo-Calc software has been carried out to thermodynamic calculation; OM, SEM and TEM have been carried out to microstructure observation; hardness and impact toughness test have been carried out to evaluate the mechanical properties. Results show that the equilibrium carbide in 6Cr15MoV steel is M23 C6 car- bide, and the M23 C6 carbides finely distributed in annealed microstructure. 6Crl5MoV martensitic stainless steel has a wider quenching temperature range, the hardness value of steel 6Cr15MoV can reach to HRC 60.8 to HRC 61.6 when quenched at 1 060 to 1 100 ℃. Finely distributed carbides will exist in quenched microstructure, and effectively inhabit the growth of austenite grain. With the increasing of quenching temperature, the volume fraction of undis- solved carbides will decrease. The excellent comprehensive mechanical properties can be obtained by quenched at 1 060 to 1 100℃ with tempered at 100 to 150 ℃, and it is mainly due to the high carbon martensite and fine grain size. At these temperature ranges, the hardness will retain about HRC 59.2 to HRC 61.6 and the Charpy U-notch impact toughness will retain about 17.3 to 20 J. A lot of M23C6 carbides precipitated from martensite matrix, at the same time along the boundaries of martensite lathes which leading to the decrease of impact toughness when tempered at 500 to 540 ℃. The MaC precipitants also existed in the martensite matrix of test steel after tempered at 500 ℃, and the mean size of M3 C precipitates is bigger than that of M23 C6 precipitates. 展开更多
关键词 martensitic stainless steel microstructure mechanical property
原文传递
Microstructure and Mechanical Properties of 06Cr13Ni4Mo Steel Treated by Quenching–Tempering–Partitioning Process 被引量:8
6
作者 Yuanyuan Song Jingping Cui Lijian Rong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第2期189-193,共5页
A heat treatment process, quenching-tempering-partitioning (Q-T-P), has been applied to a low carbon martensitic stainless steel 06Crl3Ni4Mo. By using this process, ultrafine reversed austenite can be obtained at ro... A heat treatment process, quenching-tempering-partitioning (Q-T-P), has been applied to a low carbon martensitic stainless steel 06Crl3Ni4Mo. By using this process, ultrafine reversed austenite can be obtained at room temperature. The microstructures of the reversed austenite and the martensite matrix were characterized by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) in detail. The results show that the ultrafine reversed austenite is enriched in Ni resulting in the austenite stability at room temperature. Two new types of nano-scale carbide precipitates are found in the martensite matrix. Detailed analysis suggests that the two nano-scale precipitates can be identified as ω phase and λ phase carbides, respectively. The orientation relationship between the ω phase and matrix is [011]α [/[2110]ω and (211)α//(0110)ω, while that between the X phase precipitate and matrix is [011]α][[0001]λ and (200)α/(1210)λ. For the present steel, the ultrafine reversed austenite and carbide precipitates obtained by Q-T-P treatment provide a good combination of high strength and toughness. 展开更多
关键词 Quenching-tempering-partitioning Martensitic stainless steel microstructure Reversed austenite Carbide precipitates
原文传递
Phase Transformation Behavior and Microstructural Control of High-Cr Martensitic/Ferritic Heat-resistant Steels for Power and Nuclear Plants: A Review 被引量:27
7
作者 Xiaosheng Zhou Chenxi Liu +2 位作者 Liming Yu Yongchang Liu Huijun Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第3期235-242,共8页
The martensitic/ferritic steels have been used as boiler and turbine materials in power plants, and also been selected as potential materials for structural materials in nuclear reactors. In this paper, the kinetic an... The martensitic/ferritic steels have been used as boiler and turbine materials in power plants, and also been selected as potential materials for structural materials in nuclear reactors. In this paper, the kinetic analysis of the martensite formation and microstructural control of high-Cr martensitic/ferritic steels are reviewed. A modular approach, incorporating Fisher partitioning nucleation and anisotropic growth for impingement, was proposed to describe the martensite formation kinetics under different cooling rates.The kinetic analysis suggested a thermal-activated growth feature occurring during the martensitic transformation of martensitic steels. The microstructure can be tuned by composition optimization and various combinations of heat treatment parameters(temperature, time, severe and minor deformation).For the application in power plant, the potential of boundary-design, refinement of original austenite grain size and the final martensitic lath, pinning effect of stable carbides, in improving the performances of martensitic/ferritic steels at elevated temperatures should be investigated more thoroughly.Furthermore, efforts should be made to explore the effects of retained austenite on the improvement of high-temperature creep strength. For the application of nuclear plants, attempts should also be made to produce Fe powders with uniformly distributed oxide particles by chemical reactions. 展开更多
关键词 Martensitic/ferritic steels Microstructural contro
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部