By using molecular dynamics computer simulation at atomic level, the effects of single dislocation and dipole dislocations on nucleation and growth of martensitic transformation have been studied. It was found that o...By using molecular dynamics computer simulation at atomic level, the effects of single dislocation and dipole dislocations on nucleation and growth of martensitic transformation have been studied. It was found that only the location of tension or compression stress fields of the dislocations are favorable for martensite nucleation in NiAl alloy and the dislocations can move to accommodate partly the transformation strain during the nucleation and growth of martensite. Combined with the molecular dynamics simulation, a two dimensional simulation for martensite morphology based on a dislocation model has been performed. Many factors related to martensitic transformation were considered, such as supercooling, interface energy, shear strain, normal strain and hydrostatic pressure. Different morphologies of martensites, similar to lath, lenticular, thin plate, couple-plate and lenticular couple-plate martensites observed in Fe-C and Fe-Ni-C alloys, were obtained.展开更多
By means of X-ray diffraction profile analysis of three different composition Fe?Mn?Si alloys, the relationship between stacking fault probabilityP sf with the concentrations of constituents in alloys, 1/P sf =540.05+...By means of X-ray diffraction profile analysis of three different composition Fe?Mn?Si alloys, the relationship between stacking fault probabilityP sf with the concentrations of constituents in alloys, 1/P sf =540.05+23.70× Mn wt%-138.74×Si wt%, was determined. According to the nucleation mechanism by stacking fault in this alloy, the equation between critical driving force ?G c andP sf ?G c=67.487+0.177 5/P sf (J/mol), was made. Therefore, the relationship between critical driving force and compositions was established. Associated with the thermodynamic calculation, theM s of fcc (γ)→ hcp(ε) martensitic transformation in any suitable composition Fe?Mn?Si shape memory alloys can be predicted and results seem reasonable as compared with some experimental data.展开更多
Designing of alloy concept and process for DP,TRIP and TWIP steels stressing at martensite transformation are analyzed.For DP steel,austenite volume percent and its carbon content at different intercritical temperatur...Designing of alloy concept and process for DP,TRIP and TWIP steels stressing at martensite transformation are analyzed.For DP steel,austenite volume percent and its carbon content at different intercritical temperatures are calculated as well as the tensile strength of the steel,which meet well with the experimental result.The condition for dissolution of carbide is discussed by experiments and predicted by kinetic estimation.Several sample TRIP steels are prepared and their concentration profiles are calculated showing different diffusion characteristics of elements.Calculation also shows carbon enrichment is successful in this stage through the quick diffusion of carbon from ferrite to austenie.In order to maintain the austenite stability or to prevent precipitation of cementite,minimum cooling rate from the intercritical zone to over aging stage is obtained through kinetic simulation.Bainite transformation is estimated,which indicates the carbon rerichment from ferrite of bainite structure to austenite in this stage is also successful.Thermal HCP martensite transformation and the strain induced martensite transformation in TWIP steel is introduced.Relationship between transformation and mechanical properties in the steel is also mentioned.展开更多
文摘By using molecular dynamics computer simulation at atomic level, the effects of single dislocation and dipole dislocations on nucleation and growth of martensitic transformation have been studied. It was found that only the location of tension or compression stress fields of the dislocations are favorable for martensite nucleation in NiAl alloy and the dislocations can move to accommodate partly the transformation strain during the nucleation and growth of martensite. Combined with the molecular dynamics simulation, a two dimensional simulation for martensite morphology based on a dislocation model has been performed. Many factors related to martensitic transformation were considered, such as supercooling, interface energy, shear strain, normal strain and hydrostatic pressure. Different morphologies of martensites, similar to lath, lenticular, thin plate, couple-plate and lenticular couple-plate martensites observed in Fe-C and Fe-Ni-C alloys, were obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No. 59671023).
文摘By means of X-ray diffraction profile analysis of three different composition Fe?Mn?Si alloys, the relationship between stacking fault probabilityP sf with the concentrations of constituents in alloys, 1/P sf =540.05+23.70× Mn wt%-138.74×Si wt%, was determined. According to the nucleation mechanism by stacking fault in this alloy, the equation between critical driving force ?G c andP sf ?G c=67.487+0.177 5/P sf (J/mol), was made. Therefore, the relationship between critical driving force and compositions was established. Associated with the thermodynamic calculation, theM s of fcc (γ)→ hcp(ε) martensitic transformation in any suitable composition Fe?Mn?Si shape memory alloys can be predicted and results seem reasonable as compared with some experimental data.
基金financially supported by VANITECNational Key Technology R&D Program of the Eleventh Five-year Plan+1 种基金National Key Basic research development project of China (973 Programme, No.2010CB630802)NSFC (No.50934011 and No.50971137)
文摘Designing of alloy concept and process for DP,TRIP and TWIP steels stressing at martensite transformation are analyzed.For DP steel,austenite volume percent and its carbon content at different intercritical temperatures are calculated as well as the tensile strength of the steel,which meet well with the experimental result.The condition for dissolution of carbide is discussed by experiments and predicted by kinetic estimation.Several sample TRIP steels are prepared and their concentration profiles are calculated showing different diffusion characteristics of elements.Calculation also shows carbon enrichment is successful in this stage through the quick diffusion of carbon from ferrite to austenie.In order to maintain the austenite stability or to prevent precipitation of cementite,minimum cooling rate from the intercritical zone to over aging stage is obtained through kinetic simulation.Bainite transformation is estimated,which indicates the carbon rerichment from ferrite of bainite structure to austenite in this stage is also successful.Thermal HCP martensite transformation and the strain induced martensite transformation in TWIP steel is introduced.Relationship between transformation and mechanical properties in the steel is also mentioned.