海洋锋是重要的中尺度海洋现象,具有数据量小、目标小、弱边缘等特性。针对实际检测任务中弱边缘、小目标海洋锋的检测精度低、错检及漏检率高等问题,融合scSE(spatial and channel Squeeze&Excitation)空间注意力模块构建了一种改...海洋锋是重要的中尺度海洋现象,具有数据量小、目标小、弱边缘等特性。针对实际检测任务中弱边缘、小目标海洋锋的检测精度低、错检及漏检率高等问题,融合scSE(spatial and channel Squeeze&Excitation)空间注意力模块构建了一种改进的Mask R-CNN海洋锋检测模型。该方法首先对Mask R-CNN骨干网络结构进行改进,采用scSE模块引导的ResNet-50网络作为特征提取网络,通过加权策略对图像通道和空间位置进行特征突出,提升网络对重要特征的提取能力;其次,针对海洋锋目标边缘定位不准确的问题,引入IoU boundary loss构建新的Mask损失函数,提高边界检测精度。最后,为验证方法的有效性,从训练数据和实验模型上,分别设计多组对比实验。实验结果表明,相比传统Mask R-CNN、YOLOv3神经网络及现有Mask R-CNN改进网络,本文方法对SST梯度影像数据集上的强、弱海洋锋检测效果最好,定位准确率(IoU,Intersection-over-union))及检测精度(mAP,Mean Average Precision)均达0.914以上。此外,对文中设计评估模型进行检测效率实验,结果发现在不同网络模型、不同迭代次数情况下,本文提出模型消耗时间最短,远低于YOLOv3网络完成训练时所用时长。展开更多
针对公共场所口罩佩戴检测存在遮挡、密集和小尺度的情况而导致检测精度不高的问题,以实时目标检测算法YOLOv3为基础提出一种Mask-YOLO算法。首先在特征融合过程中引入通道注意力机制以突出重要特征,减少了融合后冗余特征的影响,有效提...针对公共场所口罩佩戴检测存在遮挡、密集和小尺度的情况而导致检测精度不高的问题,以实时目标检测算法YOLOv3为基础提出一种Mask-YOLO算法。首先在特征融合过程中引入通道注意力机制以突出重要特征,减少了融合后冗余特征的影响,有效提高了特征利用率;然后以完全交并比(complete intersection over union,CIoU)损失代替均方差损失(mean square error,MSE)作为边框回归的损失函数,提高了定位精度;最后除了检测佩戴和未佩戴口罩的情况外,还对不正确佩戴口罩的情况进行了检测。实验结果表明:与YOLOv3算法相比,Mask-YOLO算法在每秒帧率(frame per second,FPS)仅下降1%的情况下使平均精度均值(mean average precision,mAP)提高了4.78%。与其他主流的目标检测算法相比,Mask-YOLO算法在复杂场景下对口罩佩戴检测也有更好的效果和鲁棒性。展开更多
由于新型冠状病毒肺炎的爆发,口罩成为人们日常生活中必需品。为了识别与检测人们是否佩戴口罩,提出了一种基于改进的YOLOv5s口罩佩戴检测算法。通过在YOLOv5s主干网络引入改进的自适应的协调注意力机制模块(Coordinate attention-activ...由于新型冠状病毒肺炎的爆发,口罩成为人们日常生活中必需品。为了识别与检测人们是否佩戴口罩,提出了一种基于改进的YOLOv5s口罩佩戴检测算法。通过在YOLOv5s主干网络引入改进的自适应的协调注意力机制模块(Coordinate attention-activate or not,CA-A)提升网络的特征提取能力,解决了错误检测和漏检的问题。以新的损失函数AD-CIoU代替CIoU损失函数,作为回归损失函数,提升了边界框的定位精确度。实验表明,与原始模型算法相比,所提出的模型算法平均精度mAP值达到96.1%,提升了1.7%,具有较好的检测精度,可以满足目标检测应用需求。展开更多
文摘针对公共场所口罩佩戴检测存在遮挡、密集和小尺度的情况而导致检测精度不高的问题,以实时目标检测算法YOLOv3为基础提出一种Mask-YOLO算法。首先在特征融合过程中引入通道注意力机制以突出重要特征,减少了融合后冗余特征的影响,有效提高了特征利用率;然后以完全交并比(complete intersection over union,CIoU)损失代替均方差损失(mean square error,MSE)作为边框回归的损失函数,提高了定位精度;最后除了检测佩戴和未佩戴口罩的情况外,还对不正确佩戴口罩的情况进行了检测。实验结果表明:与YOLOv3算法相比,Mask-YOLO算法在每秒帧率(frame per second,FPS)仅下降1%的情况下使平均精度均值(mean average precision,mAP)提高了4.78%。与其他主流的目标检测算法相比,Mask-YOLO算法在复杂场景下对口罩佩戴检测也有更好的效果和鲁棒性。
文摘由于新型冠状病毒肺炎的爆发,口罩成为人们日常生活中必需品。为了识别与检测人们是否佩戴口罩,提出了一种基于改进的YOLOv5s口罩佩戴检测算法。通过在YOLOv5s主干网络引入改进的自适应的协调注意力机制模块(Coordinate attention-activate or not,CA-A)提升网络的特征提取能力,解决了错误检测和漏检的问题。以新的损失函数AD-CIoU代替CIoU损失函数,作为回归损失函数,提升了边界框的定位精确度。实验表明,与原始模型算法相比,所提出的模型算法平均精度mAP值达到96.1%,提升了1.7%,具有较好的检测精度,可以满足目标检测应用需求。