The Poisson point process(PPP) has been widely used in wireless network modeling and performance analysis due to the independence between its nodes. Therefore, it may not be a suitable model for many of the exclusive ...The Poisson point process(PPP) has been widely used in wireless network modeling and performance analysis due to the independence between its nodes. Therefore, it may not be a suitable model for many of the exclusive networks between the nodes. This paper analyzes the energy efficiency(EE) and optimizes the two-tier heterogeneous cellular networks(Het Nets). Considering the mutual exclusion between macro base stations(MBSs) distribution, the deployment of MBSs is modeled by the Matérn hard-core point process(MHCPP), and the deployment of pico base stations(PBSs) is modeled by the PPP. We adopt a simple approximation method to study the signal to interference ratio(SIR) distribution in two-tier MHCPP-PPP networks and then derive the coverage probabilities, the average data rates and the energy efficiency of Het Nets. Finally, an optimization algorithm is proposed to improve the EE of Het Nets by controlling the transmit power of PBSs. The simulation results show that the EE of a system can be effectively improved by selecting the appropriate transmit power for the PBSs. In addition, two-tier MHCPP-PPP Het Nets have higher energy efficiency than two-tier PPP-PPP Het Nets.展开更多
Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices...Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum.To alleviate the interference,an efficient interference management way is to set exclusion zones around the cellular receivers.In this paper,we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets.The main difficulties contain three aspects:1)how to model the location randomness of base stations,cellular and D2D users in practical networks;2)how to capture the randomness and interrelation of cellular and D2D transmissions due to the existence of random exclusion zones;3)how to characterize the different types of interference and their impacts on the outage probabilities of cellular and D2D users.We then run extensive Monte-Carlo simulations which manifest that our theoretical model is very accurate.展开更多
针对河口与近海生物对环境条件变化响应的非线性和不连续性,以及生态系统所具有的多源性、开放性、耗散性和远离平衡态的复杂特征,利用人工神经网络最新技术,建立了河口滨海区生态需水量与健康生态特征指标间的非线性耦合关系的神经网...针对河口与近海生物对环境条件变化响应的非线性和不连续性,以及生态系统所具有的多源性、开放性、耗散性和远离平衡态的复杂特征,利用人工神经网络最新技术,建立了河口滨海区生态需水量与健康生态特征指标间的非线性耦合关系的神经网络计算模型,借助M at lab工具箱强大功能和自主开发接口,快速实现输入数据的预处理、网络的训练和仿真。展开更多
At present time, there has been a demand for management systems that can survey and monitor a PC (personal computer) practice room, movement of people in an office, situation of utilization of facilities and so on i...At present time, there has been a demand for management systems that can survey and monitor a PC (personal computer) practice room, movement of people in an office, situation of utilization of facilities and so on in real time without causing psychological stress. For example, PC administrators in Japanese national educational institutions must report operation status of PC practice rooms once a year. But, there is currently no system for automatically recording PC operating situations. Therefore, the burden on the PC administrators is big. In this study, we aimed at systems for accurately managing the sitting and work time without psychologically stressing PC users. This time, we propose uniform management systems of sitting and work time using smart tap node and mat sensor node by IoT (Internet of Things) technology. The smart tap was connected to PCs to acquire the operating status of the PCs. In parallel with this smart tap, the mat sensor was used to acquire human presence state. By calculating binary data representing the PC operating status and human presence state from the two sensing data (smart tap and mat sensor) by the proposed technique, we can exactly calculate wasteful power consumption etc. The use of IoT technology makes it unnecessary to use large installation services when introducing our system. Therefore, this our proposal system can be easily installed even by unskilled workers.展开更多
基金partly supported by the National Natural Science Foundation of China(Grant No.61871241,No.61701221)the Natural Science Foundation of Jiangsu Province(No.BK20160781)+1 种基金Nantong Science and Technology Project(No.JC2018127,No.JC2019117)the Research Innovation Project for College Graduates of Jiangsu Province(No.KYLX16_0662)。
文摘The Poisson point process(PPP) has been widely used in wireless network modeling and performance analysis due to the independence between its nodes. Therefore, it may not be a suitable model for many of the exclusive networks between the nodes. This paper analyzes the energy efficiency(EE) and optimizes the two-tier heterogeneous cellular networks(Het Nets). Considering the mutual exclusion between macro base stations(MBSs) distribution, the deployment of MBSs is modeled by the Matérn hard-core point process(MHCPP), and the deployment of pico base stations(PBSs) is modeled by the PPP. We adopt a simple approximation method to study the signal to interference ratio(SIR) distribution in two-tier MHCPP-PPP networks and then derive the coverage probabilities, the average data rates and the energy efficiency of Het Nets. Finally, an optimization algorithm is proposed to improve the EE of Het Nets by controlling the transmit power of PBSs. The simulation results show that the EE of a system can be effectively improved by selecting the appropriate transmit power for the PBSs. In addition, two-tier MHCPP-PPP Het Nets have higher energy efficiency than two-tier PPP-PPP Het Nets.
基金This work is funded in part by the Science and Technology Development Fund,Macao SAR(Grant Nos.0093/2022/A2,0076/2022/A2 and 0008/2022/AGJ)in part by the National Nature Science Foundation of China(Grant No.61872452)+3 种基金in part by Special fund for Dongguan’s Rural Revitalization Strategy in 2021(Grant No.20211800400102)in part by Dongguan Special Commissioner Project(Grant No.20211800500182)in part by Guangdong-Dongguan Joint Fund for Basic and Applied Research of Guangdong Province(Grant No.2020A1515110162)in part by University Special Fund of Guangdong Provincial Department of Education(Grant No.2022ZDZX1073).
文摘Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum.To alleviate the interference,an efficient interference management way is to set exclusion zones around the cellular receivers.In this paper,we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets.The main difficulties contain three aspects:1)how to model the location randomness of base stations,cellular and D2D users in practical networks;2)how to capture the randomness and interrelation of cellular and D2D transmissions due to the existence of random exclusion zones;3)how to characterize the different types of interference and their impacts on the outage probabilities of cellular and D2D users.We then run extensive Monte-Carlo simulations which manifest that our theoretical model is very accurate.
文摘针对河口与近海生物对环境条件变化响应的非线性和不连续性,以及生态系统所具有的多源性、开放性、耗散性和远离平衡态的复杂特征,利用人工神经网络最新技术,建立了河口滨海区生态需水量与健康生态特征指标间的非线性耦合关系的神经网络计算模型,借助M at lab工具箱强大功能和自主开发接口,快速实现输入数据的预处理、网络的训练和仿真。
文摘At present time, there has been a demand for management systems that can survey and monitor a PC (personal computer) practice room, movement of people in an office, situation of utilization of facilities and so on in real time without causing psychological stress. For example, PC administrators in Japanese national educational institutions must report operation status of PC practice rooms once a year. But, there is currently no system for automatically recording PC operating situations. Therefore, the burden on the PC administrators is big. In this study, we aimed at systems for accurately managing the sitting and work time without psychologically stressing PC users. This time, we propose uniform management systems of sitting and work time using smart tap node and mat sensor node by IoT (Internet of Things) technology. The smart tap was connected to PCs to acquire the operating status of the PCs. In parallel with this smart tap, the mat sensor was used to acquire human presence state. By calculating binary data representing the PC operating status and human presence state from the two sensing data (smart tap and mat sensor) by the proposed technique, we can exactly calculate wasteful power consumption etc. The use of IoT technology makes it unnecessary to use large installation services when introducing our system. Therefore, this our proposal system can be easily installed even by unskilled workers.