The Euler-Euler numerical method was used to investigate the effects of contraction ratio on twophase flow mixing with mass transfer in the flow injection nozzle. The geometric shape of the nozzle was modified to impr...The Euler-Euler numerical method was used to investigate the effects of contraction ratio on twophase flow mixing with mass transfer in the flow injection nozzle. The geometric shape of the nozzle was modified to improve carbonation efficiency. A gas inlet hole was created to increase the flow mixing of CO2 with water. A nozzle throat was also introduced to increase the gas dissolution by increasing flow rates. Various contraction ratios of nozzle throat, inlet gas and liquid velocities, and gas bubble sizes were employed to determine their effects on gas hold-up, gas concentration, and mass transfer coefficient. Results revealed that the flow injection nozzle with high contraction ratios improved carbonation because of high gas hold-up. Gas concentration was directly related to contraction ratio and gas flow velocities. Carbonation reduced when high liquid velocities and large gas bubbles were employed because of inefficient flow mixing. This study indicated that flow injection nozzle with large contraction ratios were suitable for carbonation because of their ability to increase gas hold-up, gas concentration, and mass transfer coefficient.展开更多
The couette dusty flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the dusty fluid at the stationary plate and its corresponding removal by constant suction through the p...The couette dusty flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the dusty fluid at the stationary plate and its corresponding removal by constant suction through the plate in uniform motion was analyzed. Due to this type of injection velocity the dusty flow becomes 3D. Perturbation method is used to obtain the expressions for the velocity and temperature fields of both the fluid and dust. It was found that the velocity profiles of both the fluid and dust in the main flow direction decrease with the increase of the mass concentration of the dust particles, and those in cross flow direction increase with an increase in the mass concentration of the dust particles up to the middle of the channel and thereafter decrease with increase in mass concentration of the dust particles. The skin friction components Tx and Tz in the main flow and transverse directions respectively increase with an increase in the mass concentration of the dust particles (or) injection parameter. The heat transfer coefficient decreases with the increase of the injection parameter and increases with the increase in the mass concentration of the dust particles.展开更多
文摘The Euler-Euler numerical method was used to investigate the effects of contraction ratio on twophase flow mixing with mass transfer in the flow injection nozzle. The geometric shape of the nozzle was modified to improve carbonation efficiency. A gas inlet hole was created to increase the flow mixing of CO2 with water. A nozzle throat was also introduced to increase the gas dissolution by increasing flow rates. Various contraction ratios of nozzle throat, inlet gas and liquid velocities, and gas bubble sizes were employed to determine their effects on gas hold-up, gas concentration, and mass transfer coefficient. Results revealed that the flow injection nozzle with high contraction ratios improved carbonation because of high gas hold-up. Gas concentration was directly related to contraction ratio and gas flow velocities. Carbonation reduced when high liquid velocities and large gas bubbles were employed because of inefficient flow mixing. This study indicated that flow injection nozzle with large contraction ratios were suitable for carbonation because of their ability to increase gas hold-up, gas concentration, and mass transfer coefficient.
文摘The couette dusty flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the dusty fluid at the stationary plate and its corresponding removal by constant suction through the plate in uniform motion was analyzed. Due to this type of injection velocity the dusty flow becomes 3D. Perturbation method is used to obtain the expressions for the velocity and temperature fields of both the fluid and dust. It was found that the velocity profiles of both the fluid and dust in the main flow direction decrease with the increase of the mass concentration of the dust particles, and those in cross flow direction increase with an increase in the mass concentration of the dust particles up to the middle of the channel and thereafter decrease with increase in mass concentration of the dust particles. The skin friction components Tx and Tz in the main flow and transverse directions respectively increase with an increase in the mass concentration of the dust particles (or) injection parameter. The heat transfer coefficient decreases with the increase of the injection parameter and increases with the increase in the mass concentration of the dust particles.