Virtual mass force is an indispensable component in the momentum balance involved with dispersed particles in a multiphase system.In this work the accelerating motion of a single solid particle is mathematically formu...Virtual mass force is an indispensable component in the momentum balance involved with dispersed particles in a multiphase system.In this work the accelerating motion of a single solid particle is mathematically formulated and solved using the vorticity-stream function formulation in an orthogonal curvilinear coordinate system.The total drag coefficient was evaluated from the numerical simulation in a range of the Reynolds number(Re)from 10 to 200 and the dimensionless acceleration(A)between2.0 to 2.0.The simulation demonstrates that the total drag is heavily correlated with A,and large deceleration even drops the drag force to a negative value.It is found that the value of virtual mass force coefficient(CV)of a spherical particle is a variable in a wide range and difficult to be correlated with A and Re.However,the total drag coefficient(CDV)is successfully correlated as a function of Re and A,and it increases as A is increased.The proposed correlation of total drag coefficient may be used for simulation of solid–liquid flow with better accuracy.展开更多
Computational fuid dynamics (CFD) has been widely used to study the hydrodynamics of gas-solid fluidization; however, its applications in liquid-solid fluidization are relatively rare. In this study, CFD simulations...Computational fuid dynamics (CFD) has been widely used to study the hydrodynamics of gas-solid fluidization; however, its applications in liquid-solid fluidization are relatively rare. In this study, CFD simulations of a liquid-solid fluidized bed are carried out, focusing on the effect of drag correlation and added mass force on the hydrodynamics of liquid-solid fluidization. It is shown that drag correlation has a significant effect on the simulation results and the correlation proposed by Beetstra et al. (2007) gives the best agreement with experimental data. We further show that the added mass force does play an important role in CFD simulation of liquid-solid fluidization, and therefore should not be ignored in CFD simulations,展开更多
The moist potential vorticity (MPV) equation is derived from complete atmospheric equations including the effect of mass forcing, with which the theory of Up-sliding Slantwise Vorticity Development, (USVD) is proposed...The moist potential vorticity (MPV) equation is derived from complete atmospheric equations including the effect of mass forcing, with which the theory of Up-sliding Slantwise Vorticity Development, (USVD) is proposed based on the theory of Slantwise Vorticity Development (SVD). When an air parcel slides up along a slantwise isentropic surface, its vertical component of relative vorticity will develop, and the steeper the isentropic surface is, the more violent the development will he. From the definition of MPV and the MPV equation produced here in, a complete vorticity equation is then put forward with mass forcing, which explicitly includes the effects of both internal forcings, such as variations of stability, baroclinicity, and vertical shear of horizontal wind, arid external forcings, such as diabatic heating, friction, and mass forcing. When isentropic surfaces are flat, the complete vorticity equation matches its traditional counterpart. The physical interpretations of some of the items which are included in the complete- vorticity equation but not in the traditional one are studied with a simplified model of the Changjiang-Huaihe Meiyu front. A 60-h simulation is then performed to reproduce a torrential rain event in the Changjiang-Huaihe region and the output of the model is studied qualitatively based on the theory of USVD. The result shows that the conditions of the theory of USVD are easily satisfied immediately in front of mesoscale rainstorms in the downwind direction, that is, the theory of USVD is important to the development and movement of these kinds of systems.展开更多
The impacts of cloud-induced mass forcing on the development of the moist potential vorticity (MPV) anomaly associated with torrential rains are investigated by using NCEP/NCAR 1? × 1? data. The MPV ten...The impacts of cloud-induced mass forcing on the development of the moist potential vorticity (MPV) anomaly associated with torrential rains are investigated by using NCEP/NCAR 1? × 1? data. The MPV tendency equation with the cloud-induced mass forcing is derived, and applied to the torrential rain event over the Changjiang River-Huaihe River Valleys during 26–30 June 1999. The result shows that positive anomalies are located mainly between 850 hPa and 500 hPa, while the maximum MPV, maximum positive tendency of the MPV, and maximum surface rainfall are nearly collocated. The cloud-induced mass forcing contributes to the positive tendency of the moist potential vorticity anomaly. The results indicate that the MPV may be used to track the propagation of rain systems for operational applications.展开更多
Due to the importance of the mass forcing induced by precipitation and condensation in moist processes, the La- grangian continuity equation without a source/sink term utilized to prove the Ertel-Rossby invariant (ER...Due to the importance of the mass forcing induced by precipitation and condensation in moist processes, the La- grangian continuity equation without a source/sink term utilized to prove the Ertel-Rossby invariant (ERI) and its con- servation property is re-derived considering the mass forcing. By introducing moist enthalpy and moisture entropy, the baroclinic ERI could be adapted to moist flow. After another look at the moist ERI, it is deployed as the dot product be- tween the generalized velocity and the generalized vorticity in moist flow, which constitutes a kind of generalized helicity. Thus, the baroclinic ERI is further extended to the moist case. Moreover, the derived moist ERI forumla remains formally consistent with the dry version, no matter whether mass forcing is present. By using the Weber transformation and the Lagrangian continuity equation with a source/sink effect, the conservation property of the baroclinic ERI in moist flow is revisited. The presence or absence of mass forcing in the Lagrangian continuity equation determines whether or not the baroclinic ERI in moist flow is materially conserved. In other words, it would be qualified as a quasi-invariant but only being dependent on the circumstances. By another look at the moist baroclinic ERI, it is surely a neat formalism with a simple physical explanation, and the usefulness of its anomaly in diagnosing atmospheric flow is demonstrated by case study.展开更多
The aim of this paper is to investigate the effect of heaving and pitching of ship motion due to springing bending moment. The investigation was conducted both experimentally and validated theoretically. Series of exp...The aim of this paper is to investigate the effect of heaving and pitching of ship motion due to springing bending moment. The investigation was conducted both experimentally and validated theoretically. Series of experiment were carried out using a container model-ship of which length was 3 meter, and the possibility of the so-called nth resonant springing vibration is tested by taking n from n = 2 to n = 4. The bending moment due- to vibration is also measured. The following conclusions were obtained: (l) Occurance of the higher order resonant vibration between 2nd-4th is recognized experimentally; (2) The results indicated that heaving and pitching of ship motion influenced the springing bending moment accurately.展开更多
Two types of sensitivities are proposed for stat- ically stable sailcrafts. One type is the sensitivities of solar-radiation-pressure force with respect to position of the center of mass, and the other type is the sen...Two types of sensitivities are proposed for stat- ically stable sailcrafts. One type is the sensitivities of solar-radiation-pressure force with respect to position of the center of mass, and the other type is the sensitivities of solar-radiation-pressure force with respect to attitude. The two types of sensitivities represent how the solar-radiation- pressure force changes with the position of mass center and the attitude. Sailcrafts with larger sensitivities undergo larger error of the solar-radiation-pressure force, leading to larger orbit error, as demonstrated by simulation. Then as a case study, detailed formulas are derived to calculate the sensi- tivities for sailcrafts with four triangular sails. According to these formulas, in order to reduce both types of sensitivities, the angle between opposed sails should not be too large, and the center of mass should be as close to the axis of symmetry of the four sails as possible and as far away from the center of pressure of the sailcraft as possible.展开更多
This paper tests the impacts of cloud-induced mass forcing on the moist potential vorticity (MPV) anomaly associated with torrential rains caused by Typhoon No.9914 (Dan) by using fine model simulation data output...This paper tests the impacts of cloud-induced mass forcing on the moist potential vorticity (MPV) anomaly associated with torrential rains caused by Typhoon No.9914 (Dan) by using fine model simulation data outputted by the Fifth-Generation NCAR / Penn State Mesoscale Model (MMS). The diagnostic results show that the positive MPV anomaly region, which is obtained by integrating the MPV from 600 hPa to 300 hPa in the vertical, roughly coincides with the precipitation at their synchronous stages either in position or in the distribution pattem, and the maximum positive MPV area of Dan is located mainly between 600 hPa and 300 hPa, which is much higher than torrential rain cases. Further analyses also showed that the value of positive MPV anomaly increased or decreased with the development of Dan, and the positive MPV anomaly may also be served as a tracer to indicate the evolution of tropical cyclone intensity.展开更多
Pramipexole belongs to a class of nonergot dopamine agonist recently approved for the treatment of early and advanced Parkinson's disease.A validated specific stability indicating reversed-phase liquid chromatographi...Pramipexole belongs to a class of nonergot dopamine agonist recently approved for the treatment of early and advanced Parkinson's disease.A validated specific stability indicating reversed-phase liquid chromatographic method has been developed for the quantitative determination of pramipexole in bulk as well as in pharmaceutical dosage forms in the presence of degradation products.Forced degradation studies were performed by exposition of drug to hydrolytic(acidic and basic),oxidative and photolytic stress conditions,as defined under ICH guideline Q1A(R2).Significant degradation was observed under hydrolytic,oxidative and photolytic conditions and the degradation products formed were identified by LC-MS.展开更多
The dissolution behavior of Al_(2)O_(3) in molten CaF_(2)-CaO-Al_(2)O_(3) slag,a basic slag system of electroslag remelting process,was investigated by rotating cylinder method using corundum rods to simulate Al_(2)O_...The dissolution behavior of Al_(2)O_(3) in molten CaF_(2)-CaO-Al_(2)O_(3) slag,a basic slag system of electroslag remelting process,was investigated by rotating cylinder method using corundum rods to simulate Al_(2)O_(3) inclusions in steel.The experimental results show that the dissolution rate of Al_(2)O_(3);rods in CaF_(2)-CaO-Al_(2)O_(3) slag increases with the increase in rotating speed and temperature,and the rate-controlling step is the mass transfer in the slag.The dissolution rate of Al_(2)O,in CaF_(2)-CaO-Al_(2)O_(3) slag increases with the increase in the ratio of CaO to Al_(2)O_(3),which is due to the increase in dissolution driving force and the decrease in slag viscosity.The apparent activation energy of the mass transfer of AlOs in slag C is calculated to be 222.86 kJ mol^(-1).During the dissolution of Al_(2)0,inclusions in the slag,it reacts with F in liquid slag at first,then reacts with CaO to form the intermediate compounds of xCaO-yAl_(2)O_(3) system,and finally dissolves in molten slag.The dissolution rate of Al_(2)O_(3) inclusions in CaF_(2)-CaO-Al_(2)O_(3) slag for electroslag remelting is positively correlated with the ratio of the dissolution driving force and slag viscosity,and the correlation coeficient is 2.487×10^(-11).展开更多
基金supported by the National Key Research and Development Program(2020YFA0906804)the National Natural Science Foundation of China(22035007,91934301)+1 种基金External Cooperation Program of BIC,Chinese Academy of Sciences(122111KYSB20190032)Chemistry and Chemical Engineering Guangdong Laboratory,Shantou(No.1922006).
文摘Virtual mass force is an indispensable component in the momentum balance involved with dispersed particles in a multiphase system.In this work the accelerating motion of a single solid particle is mathematically formulated and solved using the vorticity-stream function formulation in an orthogonal curvilinear coordinate system.The total drag coefficient was evaluated from the numerical simulation in a range of the Reynolds number(Re)from 10 to 200 and the dimensionless acceleration(A)between2.0 to 2.0.The simulation demonstrates that the total drag is heavily correlated with A,and large deceleration even drops the drag force to a negative value.It is found that the value of virtual mass force coefficient(CV)of a spherical particle is a variable in a wide range and difficult to be correlated with A and Re.However,the total drag coefficient(CDV)is successfully correlated as a function of Re and A,and it increases as A is increased.The proposed correlation of total drag coefficient may be used for simulation of solid–liquid flow with better accuracy.
文摘Computational fuid dynamics (CFD) has been widely used to study the hydrodynamics of gas-solid fluidization; however, its applications in liquid-solid fluidization are relatively rare. In this study, CFD simulations of a liquid-solid fluidized bed are carried out, focusing on the effect of drag correlation and added mass force on the hydrodynamics of liquid-solid fluidization. It is shown that drag correlation has a significant effect on the simulation results and the correlation proposed by Beetstra et al. (2007) gives the best agreement with experimental data. We further show that the added mass force does play an important role in CFD simulation of liquid-solid fluidization, and therefore should not be ignored in CFD simulations,
基金supported by the Chinese Academy of Sciences Program of Well-Known 0verseas Chinese Scholars under Dr.Samuel Shen and the Innovation Project of the Chinese Academy of Sciences under Grant No.KZCX3-SW-213by the National Natural Science foundation of China under Grant Nos.40023001 and 40135020.
文摘The moist potential vorticity (MPV) equation is derived from complete atmospheric equations including the effect of mass forcing, with which the theory of Up-sliding Slantwise Vorticity Development, (USVD) is proposed based on the theory of Slantwise Vorticity Development (SVD). When an air parcel slides up along a slantwise isentropic surface, its vertical component of relative vorticity will develop, and the steeper the isentropic surface is, the more violent the development will he. From the definition of MPV and the MPV equation produced here in, a complete vorticity equation is then put forward with mass forcing, which explicitly includes the effects of both internal forcings, such as variations of stability, baroclinicity, and vertical shear of horizontal wind, arid external forcings, such as diabatic heating, friction, and mass forcing. When isentropic surfaces are flat, the complete vorticity equation matches its traditional counterpart. The physical interpretations of some of the items which are included in the complete- vorticity equation but not in the traditional one are studied with a simplified model of the Changjiang-Huaihe Meiyu front. A 60-h simulation is then performed to reproduce a torrential rain event in the Changjiang-Huaihe region and the output of the model is studied qualitatively based on the theory of USVD. The result shows that the conditions of the theory of USVD are easily satisfied immediately in front of mesoscale rainstorms in the downwind direction, that is, the theory of USVD is important to the development and movement of these kinds of systems.
基金by the National Natural Science Foundation of China under Grant Nos.40405007 , 40275015 the OlympicProject under Grant No.KACX1-02 partially sup-ported by the"Outstanding Overseas Chinese Scholars"Project of the Chinese Academy of Sciences under Grant No.2002-1-2.
文摘The impacts of cloud-induced mass forcing on the development of the moist potential vorticity (MPV) anomaly associated with torrential rains are investigated by using NCEP/NCAR 1? × 1? data. The MPV tendency equation with the cloud-induced mass forcing is derived, and applied to the torrential rain event over the Changjiang River-Huaihe River Valleys during 26–30 June 1999. The result shows that positive anomalies are located mainly between 850 hPa and 500 hPa, while the maximum MPV, maximum positive tendency of the MPV, and maximum surface rainfall are nearly collocated. The cloud-induced mass forcing contributes to the positive tendency of the moist potential vorticity anomaly. The results indicate that the MPV may be used to track the propagation of rain systems for operational applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41375054,41575064,and 91437215)the Opening Foundation of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(Grant Nos.2015LASW-B01 and 2015LASW-A02)
文摘Due to the importance of the mass forcing induced by precipitation and condensation in moist processes, the La- grangian continuity equation without a source/sink term utilized to prove the Ertel-Rossby invariant (ERI) and its con- servation property is re-derived considering the mass forcing. By introducing moist enthalpy and moisture entropy, the baroclinic ERI could be adapted to moist flow. After another look at the moist ERI, it is deployed as the dot product be- tween the generalized velocity and the generalized vorticity in moist flow, which constitutes a kind of generalized helicity. Thus, the baroclinic ERI is further extended to the moist case. Moreover, the derived moist ERI forumla remains formally consistent with the dry version, no matter whether mass forcing is present. By using the Weber transformation and the Lagrangian continuity equation with a source/sink effect, the conservation property of the baroclinic ERI in moist flow is revisited. The presence or absence of mass forcing in the Lagrangian continuity equation determines whether or not the baroclinic ERI in moist flow is materially conserved. In other words, it would be qualified as a quasi-invariant but only being dependent on the circumstances. By another look at the moist baroclinic ERI, it is surely a neat formalism with a simple physical explanation, and the usefulness of its anomaly in diagnosing atmospheric flow is demonstrated by case study.
文摘The aim of this paper is to investigate the effect of heaving and pitching of ship motion due to springing bending moment. The investigation was conducted both experimentally and validated theoretically. Series of experiment were carried out using a container model-ship of which length was 3 meter, and the possibility of the so-called nth resonant springing vibration is tested by taking n from n = 2 to n = 4. The bending moment due- to vibration is also measured. The following conclusions were obtained: (l) Occurance of the higher order resonant vibration between 2nd-4th is recognized experimentally; (2) The results indicated that heaving and pitching of ship motion influenced the springing bending moment accurately.
基金supported by the National Natural Science Foundation of China (10832004)China Postdoctoral Science Foundation (023200006)
文摘Two types of sensitivities are proposed for stat- ically stable sailcrafts. One type is the sensitivities of solar-radiation-pressure force with respect to position of the center of mass, and the other type is the sensitivities of solar-radiation-pressure force with respect to attitude. The two types of sensitivities represent how the solar-radiation- pressure force changes with the position of mass center and the attitude. Sailcrafts with larger sensitivities undergo larger error of the solar-radiation-pressure force, leading to larger orbit error, as demonstrated by simulation. Then as a case study, detailed formulas are derived to calculate the sensi- tivities for sailcrafts with four triangular sails. According to these formulas, in order to reduce both types of sensitivities, the angle between opposed sails should not be too large, and the center of mass should be as close to the axis of symmetry of the four sails as possible and as far away from the center of pressure of the sailcraft as possible.
基金State Key Development Program for Basic Research of China (2009CB421505)National Natural Science Foundation of China (40505009)+1 种基金NMC-TIGGE Program (GYHY200706001)Project of State Key Laboratory of Severe Weather (2008LASW-A01)
文摘This paper tests the impacts of cloud-induced mass forcing on the moist potential vorticity (MPV) anomaly associated with torrential rains caused by Typhoon No.9914 (Dan) by using fine model simulation data outputted by the Fifth-Generation NCAR / Penn State Mesoscale Model (MMS). The diagnostic results show that the positive MPV anomaly region, which is obtained by integrating the MPV from 600 hPa to 300 hPa in the vertical, roughly coincides with the precipitation at their synchronous stages either in position or in the distribution pattem, and the maximum positive MPV area of Dan is located mainly between 600 hPa and 300 hPa, which is much higher than torrential rain cases. Further analyses also showed that the value of positive MPV anomaly increased or decreased with the development of Dan, and the positive MPV anomaly may also be served as a tracer to indicate the evolution of tropical cyclone intensity.
文摘Pramipexole belongs to a class of nonergot dopamine agonist recently approved for the treatment of early and advanced Parkinson's disease.A validated specific stability indicating reversed-phase liquid chromatographic method has been developed for the quantitative determination of pramipexole in bulk as well as in pharmaceutical dosage forms in the presence of degradation products.Forced degradation studies were performed by exposition of drug to hydrolytic(acidic and basic),oxidative and photolytic stress conditions,as defined under ICH guideline Q1A(R2).Significant degradation was observed under hydrolytic,oxidative and photolytic conditions and the degradation products formed were identified by LC-MS.
文摘The dissolution behavior of Al_(2)O_(3) in molten CaF_(2)-CaO-Al_(2)O_(3) slag,a basic slag system of electroslag remelting process,was investigated by rotating cylinder method using corundum rods to simulate Al_(2)O_(3) inclusions in steel.The experimental results show that the dissolution rate of Al_(2)O_(3);rods in CaF_(2)-CaO-Al_(2)O_(3) slag increases with the increase in rotating speed and temperature,and the rate-controlling step is the mass transfer in the slag.The dissolution rate of Al_(2)O,in CaF_(2)-CaO-Al_(2)O_(3) slag increases with the increase in the ratio of CaO to Al_(2)O_(3),which is due to the increase in dissolution driving force and the decrease in slag viscosity.The apparent activation energy of the mass transfer of AlOs in slag C is calculated to be 222.86 kJ mol^(-1).During the dissolution of Al_(2)0,inclusions in the slag,it reacts with F in liquid slag at first,then reacts with CaO to form the intermediate compounds of xCaO-yAl_(2)O_(3) system,and finally dissolves in molten slag.The dissolution rate of Al_(2)O_(3) inclusions in CaF_(2)-CaO-Al_(2)O_(3) slag for electroslag remelting is positively correlated with the ratio of the dissolution driving force and slag viscosity,and the correlation coeficient is 2.487×10^(-11).