期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An improved flexible tolerance method for solving nonlinear constrained optimization problems:Application in mass integration
1
作者 Alice Medeiros Lima Wu Hong Kwong Antonio José Goncalves Cruz 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期617-631,共15页
This paper proposes the use of the flexible tolerance method(FTM) modified with adaptive Nelder–Mead parameters and barrier to solve constrained optimization problems. The problems used to analyze the performance of ... This paper proposes the use of the flexible tolerance method(FTM) modified with adaptive Nelder–Mead parameters and barrier to solve constrained optimization problems. The problems used to analyze the performance of the methods were taken from G-Suite functions, and the methods with the best performance were applied in mass integration problems. Four methods were proposed:(1) flexible tolerance method(FTM) using adaptive parameters(FTMA),(2) flexible tolerance method with scaling(FTMS) and with adaptive parameters(FTMAS),(3) FTMS including the barrier modification(MFTMS) and(4) MFTMS hybridized with PSO(MFTMS-PSO). The success rates of these methods were 100%(MFTMS), 85%(MFTMS-PSO), 40%(FTMAS) and 30%(FTMA).Numerical experiments indicated that the MFTMS could efficiently and reliably improve the accuracy of global optima. In mass integration, the method was able, from current process situation, to reach the optimum process configuration that includes integration issues, which was not possible using FTM in its standard formulation. The hybridization of FTMS with PSO(without barrier), FTMS-PSO, was also able to solve mass integration problems efficiently. 展开更多
关键词 Flexible tolerance method Adaptive parameters SCALING Constrained optimization BARRIER PSO mass integration
下载PDF
Determination of rock mass integrity coefficient using a non-invasive geophysical approach 被引量:2
2
作者 Muhammad Hasan Yanjun Shang +2 位作者 Xuetao Yi Peng Shao Meng He 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1426-1440,共15页
Determination of rock mechanical parameters is the most important step in rock mass quality evaluation and has significant impacts on geotechnical engineering practice.Rock mass integrity coefficient(KV)is one of the ... Determination of rock mechanical parameters is the most important step in rock mass quality evaluation and has significant impacts on geotechnical engineering practice.Rock mass integrity coefficient(KV)is one of the most efficient parameters,which is conventionally determined from boreholes.Such approaches,however,are time-consuming and expensive,offer low data coverage of point measurements,require heavy equipment,and are hardly conducted in steep topographic sites.Hence,borehole approaches cannot assess the subsurface thoroughly for rock mass quality evaluation.Alternatively,use of geophysical methods is non-invasive,rapid and economical.The proposed geophysical approach makes useful empirical correlation between geophysical and geotechnical parameters.We evaluated the rock mass quality via integration between KV measured from the limited boreholes and inverted resistivity obtained from electrical resistivity tomography(ERT).The borehole-ERT correlation provided KV along various geophysical profiles for more detailed 2D/3D(two-/three-dimensional)mapping of rock mass quality.The subsurface was thoroughly evaluated for rock masses with different engineering qualities,including highly weathered rock,semi-weathered rock,and fresh rock.Furthermore,ERT was integrated with induced polarization(IP)to resolve the uncertainty caused by water/clay content.Our results show that the proposed method,compared with the conventional approaches,can reduce the ambiguities caused by inadequate data,and give more accurate insights into the subsurface for rock mass quality evaluation. 展开更多
关键词 Geotechnical engineering Rock mass integrity coefficient Rock mechanical parameters Geophysical parameters Electrical resistivity tomography(ERT) Induced polarization(IP)
下载PDF
Synthesis and Scheduling of Optimal Batch Water-recycle Networks 被引量:4
3
作者 Arwa H. Rabie Mahmoud M. El-Halwagi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第3期474-479,共6页
This work develops an optimization-based methodology for the design and scheduling of batch water recycle networks. This task requires the identification of network configuration, fresh-water usage, recycle assignment... This work develops an optimization-based methodology for the design and scheduling of batch water recycle networks. This task requires the identification of network configuration, fresh-water usage, recycle assignments from sources to sinks, wastewater discharge, and a scheduling scheme. A new source-tank-sink representation is developed to allow for storage and dispatch tanks. The problem is solved in stages by first eliminating scheduling constraints and determining minimum usage of fresh water and wastewater discharge. An iterative procedure is formulated to minimize the total annual cost of the system by trading off capital versus operating costs. The work overcomes limitations in previous literature work including restricted recycle within the same cycle, lumped balances that may not lead to feasible solutions, and unrealistic objective functions. A case study is solved to illustrate the usefulness of the devised procedure. 展开更多
关键词 process integration process synthesis mass integration batch networks water recycle SCHEDULING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部