The real-time computer-controlled actuators are used to connect the truncated parts of moorings and risers in the active hybrid model testing system. This must be able to work in model-scale real time, based on feedba...The real-time computer-controlled actuators are used to connect the truncated parts of moorings and risers in the active hybrid model testing system. This must be able to work in model-scale real time, based on feedback input from the floater motions. Thus, mooring line dynamics and damping effects are artificially simulated in real time, based on a computer-based model of the problem. In consideration of the nonlinear characteristics of the sea platform catenary mooring line, the equations of the mooring line motion are formulated by using the lumped-mass method and the dynamic response of several points on the mooring line is investigated by the time and frequency domain analysis method. The dynamic response of the representative point on the mooring line is analyzed under the condition of two different corresponding upper endpoint movements namely sine wave excitation and random wave excitation. The corresponding laws of the dynamic response between the equivalent water depth truncated points at different locations and the upper endpoint are obtained, which can provide technical support for further study of the active hybrid model test.展开更多
The series connection of multistage pumping module is the common concept of deepwater riserless mud recovery drilling system. In this system, the influence of the mass of pumping module on the vibration of mud recover...The series connection of multistage pumping module is the common concept of deepwater riserless mud recovery drilling system. In this system, the influence of the mass of pumping module on the vibration of mud recovery line cannot be ignored, and the lumped mass method has been utilized to discretize the mud recovery line. Based on the analysis of different boundary conditions, the paper establishes the axial forced vibration model of the mud recovery line considering the seawater damping, and the vibration model analysis provides the universal solution to the vibration model. An example of the two-stage pumping system has been used to analyze the dynamic response of mud recovery line under different excited frequencies. This paper has the important directive significance for the application of riserless mud recovery drilling technology in deepwater surface drilling.展开更多
A refined numerical method, based upon time-line interpolation, for the simulation of advection and diffusion has been tentatively explored. A complete set of temporal reachback numerical scheme in applying the method...A refined numerical method, based upon time-line interpolation, for the simulation of advection and diffusion has been tentatively explored. A complete set of temporal reachback numerical scheme in applying the method of characteristics has been derived, and the favorable accuracy of the method demonstrated. The use of interpolations in time, rather than the more widely used interpolations in space, demonstrates that it generates a much smaller numerical error.展开更多
基金financially supported by the Natural Science Foundation of Zhejiang Province(Grant Nos.Y14E090034 and Y13F020140)the Young Scientist Training Program in Zhejiang Province(Grant No.2013R60G7160040)+1 种基金the State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University for the Open Fund Project(Grant No.1516)the Open Fund Project of Second Institute of Oceanography(Grant No.SOED1706)
文摘The real-time computer-controlled actuators are used to connect the truncated parts of moorings and risers in the active hybrid model testing system. This must be able to work in model-scale real time, based on feedback input from the floater motions. Thus, mooring line dynamics and damping effects are artificially simulated in real time, based on a computer-based model of the problem. In consideration of the nonlinear characteristics of the sea platform catenary mooring line, the equations of the mooring line motion are formulated by using the lumped-mass method and the dynamic response of several points on the mooring line is investigated by the time and frequency domain analysis method. The dynamic response of the representative point on the mooring line is analyzed under the condition of two different corresponding upper endpoint movements namely sine wave excitation and random wave excitation. The corresponding laws of the dynamic response between the equivalent water depth truncated points at different locations and the upper endpoint are obtained, which can provide technical support for further study of the active hybrid model test.
基金financially supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2008ZX05026-001-12)
文摘The series connection of multistage pumping module is the common concept of deepwater riserless mud recovery drilling system. In this system, the influence of the mass of pumping module on the vibration of mud recovery line cannot be ignored, and the lumped mass method has been utilized to discretize the mud recovery line. Based on the analysis of different boundary conditions, the paper establishes the axial forced vibration model of the mud recovery line considering the seawater damping, and the vibration model analysis provides the universal solution to the vibration model. An example of the two-stage pumping system has been used to analyze the dynamic response of mud recovery line under different excited frequencies. This paper has the important directive significance for the application of riserless mud recovery drilling technology in deepwater surface drilling.
文摘A refined numerical method, based upon time-line interpolation, for the simulation of advection and diffusion has been tentatively explored. A complete set of temporal reachback numerical scheme in applying the method of characteristics has been derived, and the favorable accuracy of the method demonstrated. The use of interpolations in time, rather than the more widely used interpolations in space, demonstrates that it generates a much smaller numerical error.