This work deals with the degradation of AZ31 and AZ91 magnesium alloys when they are exposed to three types of physiological media for seven days at 37°C:Ringer's,Hanks\and simulated body fluid(SBF)solutions....This work deals with the degradation of AZ31 and AZ91 magnesium alloys when they are exposed to three types of physiological media for seven days at 37°C:Ringer's,Hanks\and simulated body fluid(SBF)solutions.A combination of immersions tests and surface characterisation methods were employed to evaluate the attack on the surface,and the stability of the formed corrosion product layers for each alloy/electrolyte system.Measurements of the Mg-ion released into the electrolytes were also carried out in order to be correlated with the degradation of the alloys.Electrochemical impedance spectroscopy(EIS)and potentiodynamic polarisation(PDP)techniques were employed to compare the performance of the alloys in these different aggressive electrolytes.According to the obtained results,the Mg-alloys exposed to Hanks'media were the less affected,which fact was attributed to a higher stability of the corrosion products layer formed in this medium,in comparison of those formed in Ringer's and SBF solutions.In add让ion,the corrosion damage was lower for AZ91 than for AZ31 alloy in all environments due to its higher Al content.The mass loss rates calculated from both immersion tests and electrochemical methods followed the same trend for comparative purposes between alloys.展开更多
Based on the drying-wetting cycles experiment and the carbonation-drying-wetting cycles experiment for coral aggregate seawater concrete(CASC)with different strength grades,the effects of carbonation-drying-wetting on...Based on the drying-wetting cycles experiment and the carbonation-drying-wetting cycles experiment for coral aggregate seawater concrete(CASC)with different strength grades,the effects of carbonation-drying-wetting on the durability of CASC are studied with the surface state,mass loss rate,relative dynamic elastic modulus,ultrasonic wave velocity and cube compressive strength as indices.Results show that the mass loss rate of CASC increases gradually with the increase in cycle times in the drying-wetting and carbonation-drying-wetting cycles.The mass loss rate increases relatively slowly at the initial stage but it increases remarkably after 10 cycles.The relative dynamic elastic modulus and ultrasonic wave velocity decrease gradually with the increase in cycle times.After 6 cycles,the decrease rate of the relative dynamic elastic modulus and ultrasonic wave velocity of CASC tends to be flat and the surface is slightly damaged.Compared with the initial 28 d cube compressive strength,the cube compressive strength of CASC decreases by 8.8%to 11.0%.Drying-wetting cycles and carbonation can accelerate seawater erosion on CASC,and drying-wetting cycles result in salting-out and accelerate the destruction of concrete.Therefore,the carbonation-drying-wetting accelerates the destruction of CASC.展开更多
The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was...The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was found that the increase of activation energy results in the decrease of exponent and the increase of Tmax. The kinetic parameters were involved in the analysis of the thermal degradation of several polymers. The degradation kinetics of these polymers well complied with the prediction of the derivative expressions for the polymer degradation with single mechanism dominated.展开更多
Aims Litter decomposition is a fundamental process within ecosystem functioning,and it is largely dependent on the biodiversity of ecosystems.We explored the effects of species diversity and genetic diversity of litte...Aims Litter decomposition is a fundamental process within ecosystem functioning,and it is largely dependent on the biodiversity of ecosystems.We explored the effects of species diversity and genetic diversity of litter on the litter decomposition rate.Methods We used laboratory microcosms to determine whether species diversity and genetic diversity and their interaction affect leaf litter decomposition.We set up 8 treatments containing 1,2,4 diversity levels of four broad-leaf species(Alniphyllum fortunei,Idesia polycarpa,Cinnamomum camphora and Daphniphyllum oldhamii)both in species and genetic sense.Totally 246 microcosms containing same amount of soil and litter of prescribed diversity treatment were stored in the dark at 25℃for 12 weeks.Important Findings The effect of litter species diversity on litter decomposition was largely dependent on species composition of the litter mixture in terms of species identity.Overall,the decomposition rate increased linearly with the richness of seed family when the species identity was disregarded.However,no interactive effect of species diversity and genetic diversity on mass loss was detected.The litter decomposition rate was found to be unrelated to the initial carbon(C),whereas it was negatively correlated with the initial total nitrogen(N)and N:P ratio.However,the regression curves of the litter decomposition rate against the total P and C:N ratio displayed quadratic parabolas opening upward and downward,respectively.This study demonstrated how species and/or genetic diversity and the stoichiometry of litter per se affect litter decomposition.Further studies should be performed in the long term to ascertain how such effects operate and how they change during the decomposition process,particularly in response to varying composition and diversity of standing plants in the environments.展开更多
Rhizomes are essential organs for growth and expansion of Phragmites australis. They function as an important source of organic matter and as a nutrient source, especially in the artificial land-water transitional zon...Rhizomes are essential organs for growth and expansion of Phragmites australis. They function as an important source of organic matter and as a nutrient source, especially in the artificial land-water transitional zones (ALWTZs) of shallow lakes. In this study, decomposition experiments on 1- to 6-year-old R australis rhizomes were conducted in the ALWTZ of Lake Baiyangdian to evaluate the contribution of the rhizomes to organic matter accumulation and nutrient release. Mass loss and changes in nutrient content were measured after 3, 7, 15, 30, 60, 90, 120, and 180 days. The decomposition process was modeled with a composite exponential model. The Pearson correlation analysis was used to analyze the relationships between mass loss and litter quality factors. A multiple stepwise regression model was utilized to determine the dominant factors that affect mass loss. Results showed that the decomposition rates in water were significantly higher than those in soil for 1- to 6-year-old rhizomes. However, the sequence of decomposition rates was identical in both water and soil. Significant relationships between mass loss and litter quality factors were observed at a later stage, and P-related factors proved to have a more significant impact than N-related factors on mass loss. According to multiple stepwise models, the C/P ratio was found to be the dominant factor affecting the mass loss in water, and the C/N and C/P ratios were the main factors affecting the mass loss in soil. The combined effects of harvesting, ditch broadening, and control of water depth should be considered for lake administrators.展开更多
文摘This work deals with the degradation of AZ31 and AZ91 magnesium alloys when they are exposed to three types of physiological media for seven days at 37°C:Ringer's,Hanks\and simulated body fluid(SBF)solutions.A combination of immersions tests and surface characterisation methods were employed to evaluate the attack on the surface,and the stability of the formed corrosion product layers for each alloy/electrolyte system.Measurements of the Mg-ion released into the electrolytes were also carried out in order to be correlated with the degradation of the alloys.Electrochemical impedance spectroscopy(EIS)and potentiodynamic polarisation(PDP)techniques were employed to compare the performance of the alloys in these different aggressive electrolytes.According to the obtained results,the Mg-alloys exposed to Hanks'media were the less affected,which fact was attributed to a higher stability of the corrosion products layer formed in this medium,in comparison of those formed in Ringer's and SBF solutions.In add让ion,the corrosion damage was lower for AZ91 than for AZ31 alloy in all environments due to its higher Al content.The mass loss rates calculated from both immersion tests and electrochemical methods followed the same trend for comparative purposes between alloys.
基金The National Natural Science Foundation of China(No.11832013,51878350)the Fundamental Research Funds for the Central Universities(No.B210202023)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20180433)the Water Resources Science and Technology Project of Jiangsu Province(No.2020017)the Basic Science Research Project of Nantong(No.JC2020120)the Key Laboratory of Coastal Disaster and Defence of Ministry of Education(Hohai University)(No.202006).
文摘Based on the drying-wetting cycles experiment and the carbonation-drying-wetting cycles experiment for coral aggregate seawater concrete(CASC)with different strength grades,the effects of carbonation-drying-wetting on the durability of CASC are studied with the surface state,mass loss rate,relative dynamic elastic modulus,ultrasonic wave velocity and cube compressive strength as indices.Results show that the mass loss rate of CASC increases gradually with the increase in cycle times in the drying-wetting and carbonation-drying-wetting cycles.The mass loss rate increases relatively slowly at the initial stage but it increases remarkably after 10 cycles.The relative dynamic elastic modulus and ultrasonic wave velocity decrease gradually with the increase in cycle times.After 6 cycles,the decrease rate of the relative dynamic elastic modulus and ultrasonic wave velocity of CASC tends to be flat and the surface is slightly damaged.Compared with the initial 28 d cube compressive strength,the cube compressive strength of CASC decreases by 8.8%to 11.0%.Drying-wetting cycles and carbonation can accelerate seawater erosion on CASC,and drying-wetting cycles result in salting-out and accelerate the destruction of concrete.Therefore,the carbonation-drying-wetting accelerates the destruction of CASC.
文摘The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was found that the increase of activation energy results in the decrease of exponent and the increase of Tmax. The kinetic parameters were involved in the analysis of the thermal degradation of several polymers. The degradation kinetics of these polymers well complied with the prediction of the derivative expressions for the polymer degradation with single mechanism dominated.
基金funded by NSFC grants(31570530,41371077)German Research Foundation(DFG FOR 891).
文摘Aims Litter decomposition is a fundamental process within ecosystem functioning,and it is largely dependent on the biodiversity of ecosystems.We explored the effects of species diversity and genetic diversity of litter on the litter decomposition rate.Methods We used laboratory microcosms to determine whether species diversity and genetic diversity and their interaction affect leaf litter decomposition.We set up 8 treatments containing 1,2,4 diversity levels of four broad-leaf species(Alniphyllum fortunei,Idesia polycarpa,Cinnamomum camphora and Daphniphyllum oldhamii)both in species and genetic sense.Totally 246 microcosms containing same amount of soil and litter of prescribed diversity treatment were stored in the dark at 25℃for 12 weeks.Important Findings The effect of litter species diversity on litter decomposition was largely dependent on species composition of the litter mixture in terms of species identity.Overall,the decomposition rate increased linearly with the richness of seed family when the species identity was disregarded.However,no interactive effect of species diversity and genetic diversity on mass loss was detected.The litter decomposition rate was found to be unrelated to the initial carbon(C),whereas it was negatively correlated with the initial total nitrogen(N)and N:P ratio.However,the regression curves of the litter decomposition rate against the total P and C:N ratio displayed quadratic parabolas opening upward and downward,respectively.This study demonstrated how species and/or genetic diversity and the stoichiometry of litter per se affect litter decomposition.Further studies should be performed in the long term to ascertain how such effects operate and how they change during the decomposition process,particularly in response to varying composition and diversity of standing plants in the environments.
文摘Rhizomes are essential organs for growth and expansion of Phragmites australis. They function as an important source of organic matter and as a nutrient source, especially in the artificial land-water transitional zones (ALWTZs) of shallow lakes. In this study, decomposition experiments on 1- to 6-year-old R australis rhizomes were conducted in the ALWTZ of Lake Baiyangdian to evaluate the contribution of the rhizomes to organic matter accumulation and nutrient release. Mass loss and changes in nutrient content were measured after 3, 7, 15, 30, 60, 90, 120, and 180 days. The decomposition process was modeled with a composite exponential model. The Pearson correlation analysis was used to analyze the relationships between mass loss and litter quality factors. A multiple stepwise regression model was utilized to determine the dominant factors that affect mass loss. Results showed that the decomposition rates in water were significantly higher than those in soil for 1- to 6-year-old rhizomes. However, the sequence of decomposition rates was identical in both water and soil. Significant relationships between mass loss and litter quality factors were observed at a later stage, and P-related factors proved to have a more significant impact than N-related factors on mass loss. According to multiple stepwise models, the C/P ratio was found to be the dominant factor affecting the mass loss in water, and the C/N and C/P ratios were the main factors affecting the mass loss in soil. The combined effects of harvesting, ditch broadening, and control of water depth should be considered for lake administrators.