The azimuthator is an important part of plasma optical mass separation.The existing design for an azimuthator is based on the single particle orbit theory and focused on the movement of ions.In this paper,the particle...The azimuthator is an important part of plasma optical mass separation.The existing design for an azimuthator is based on the single particle orbit theory and focused on the movement of ions.In this paper,the particle simulation method is adopted to study the behavior of plasma crossing an azimuthator.The results show that electrons are bounded at the entrance of the azimuthator and an axial electric field is produced due to the charge separation.In order to better achieve the function of the azimuthator,a cathode is designed to transmit the electrons and to obtain a quasi-neutral plasma beam.展开更多
Based on particle-in-cell simulation, we studied the motions of ions and electrons. The results have shown that electrons are bounded by a magnetic field and only a small number of electrons can pass through the whirl...Based on particle-in-cell simulation, we studied the motions of ions and electrons. The results have shown that electrons are bounded by a magnetic field and only a small number of electrons can pass through the whirler channel. The plasma becomes non-neutral when it is emitted from the whirler, and the spatial charge leads to a beam divergence, which is unfavorable for mass separation. In order to compensate the spatial charge, a cathode is designed to transmit electrons and the quasi-neutral plasma beam. Experiment results have demonstrated that the auxiliary cathode can obviously improve the compensation degree of the spatial charge.展开更多
基金supported by National Natural Science Foundation of China(Nos.51207033 and 11275034)the International Scientific and Technological Cooperation Projects of China(No.2011DFR60130)+1 种基金Liaoning Province Science and Technology Plan Project of China(No.2011224007)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.3132014328)
文摘The azimuthator is an important part of plasma optical mass separation.The existing design for an azimuthator is based on the single particle orbit theory and focused on the movement of ions.In this paper,the particle simulation method is adopted to study the behavior of plasma crossing an azimuthator.The results show that electrons are bounded at the entrance of the azimuthator and an axial electric field is produced due to the charge separation.In order to better achieve the function of the azimuthator,a cathode is designed to transmit the electrons and to obtain a quasi-neutral plasma beam.
基金supported by National Natural Science Foundation of China(No.51177020)
文摘Based on particle-in-cell simulation, we studied the motions of ions and electrons. The results have shown that electrons are bounded by a magnetic field and only a small number of electrons can pass through the whirler channel. The plasma becomes non-neutral when it is emitted from the whirler, and the spatial charge leads to a beam divergence, which is unfavorable for mass separation. In order to compensate the spatial charge, a cathode is designed to transmit electrons and the quasi-neutral plasma beam. Experiment results have demonstrated that the auxiliary cathode can obviously improve the compensation degree of the spatial charge.